共查询到20条相似文献,搜索用时 0 毫秒
1.
Komori K Sakae S Daiyasu H Toh H Morikawa K Shinagawa H Ishino Y 《The Journal of biological chemistry》2000,275(51):40385-40391
The Holliday junction cleavage protein, Hjc resolvase of Pyrococcus furiosus, is the first Holliday junction resolvase to be discovered in Archaea. Although the archaeal resolvase shares certain biochemical properties with other non-archaeal junction resolvases, no amino acid sequence similarity has been identified. To investigate the structure-function relationship of this new Holliday junction resolvase, we constructed a series of mutant hjc genes using site-directed mutagenesis targeted at the residues conserved among the archaeal orthologs. The products of these mutant genes were purified to homogeneity. With analysis of the activity of the mutant proteins to bind and cleave synthetic Holliday junctions, one acidic residue, Glu-9, and two basic residues, Arg-10 and Arg-25, were found to play critical roles in enzyme action. This is in addition to the three conserved residues, Asp-33, Glu-46, and Lys-48, which are also conserved in the motif found in the type II restriction endonuclease family proteins. Two aromatic residues, Phe-68 and Phe-72, are important for the formation of the homodimer probably through hydrophobic interactions. The results of these studies have provided insights into the structure-function relationships of the archaeal Holliday junction resolvase as well as the universality and diversity of the Holliday junction cleavage reaction. 相似文献
2.
Garcia AD Otero J Lebowitz J Schuck P Moss B 《The Journal of biological chemistry》2006,281(17):11618-11626
Recently, poxviruses were found to encode a protein with signature motifs present in the RuvC family of Holliday junction (HJ) resolvases, which have a key role in homologous recombination in bacteria. The vaccinia virus homolog A22 specifically cleaved synthetic HJ DNA in vitro and was required for the in vivo resolution of viral DNA concatemers into unit-length genomes with hairpin telomeres. It was of interest to further characterize a poxvirus resolvase in view of the low sequence similarity with RuvC, the absence of virus-encoded RuvA and RuvB to interact with, and the different functions of the viral and bacterial resolvases. Because purified A22 aggregated severely, studies were carried out with maltose-binding protein fused to A22 as well as to RuvC. Using gel filtration, chemical cross-linking, analytical ultracentrifugation, and light scattering, we demonstrated that A22 and RuvC are homodimers in solution. Furthermore, the dimeric form of the resolvase associated with HJ DNA, presumably facilitating the symmetrical cleavage of such structures. Like RuvC, A22 symmetrically cleaved fixed HJ junctions as well as junctions allowing strand mobility. Unlike RuvC and other members of the family, however, the poxvirus enzyme exhibited little cleavage sequence specificity. Structural and enzymatic similarities of poxvirus, bacterial, and fungal mitochondrial HJ resolvases are consistent with their predicted evolutionary relationship based on sequence analysis. The absence of a homologous resolvase in mammalian cells makes these microbial enzymes excellent potential therapeutic targets. 相似文献
3.
Cacciapuoti G Gorassini S Mazzeo MF Siciliano RA Carbone V Zappia V Porcelli M 《The FEBS journal》2007,274(10):2482-2495
We report here the characterization of the first mammalian-like purine nucleoside phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus (PfPNP). The gene PF0853 encoding PfPNP was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. PfPNP is a homohexamer of 180 kDa which shows a much higher similarity with 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) than with purine nucleoside phosphorylase (PNP) family members. Like human PNP, PfPNP shows an absolute specificity for inosine and guanosine. PfPNP shares 50% identity with MTAP from P. furiosus (PfMTAP). The alignment of the protein sequences of PfPNP and PfMTAP indicates that only four residue changes are able to switch the specificity of PfPNP from a 6-oxo to a 6-amino purine nucleoside phosphorylase still maintaining the same overall active site organization. PfPNP is highly thermophilic with an optimum temperature of 120 degrees C and is characterized by extreme thermodynamic stability (T(m), 110 degrees C that increases to 120 degrees C in the presence of 100 mm phosphate), kinetic stability (100% residual activity after 4 h incubation at 100 degrees C), and remarkable SDS-resistance. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. By integrating biochemical methodologies with mass spectrometry we assigned three pairs of intrasubunit disulfide bridges that play a role in the stability of the enzyme against thermal inactivation. The characterization of the thermal properties of the C254S/C256S mutant suggests that the CXC motif in the C-terminal region may also account for the extreme enzyme thermostability. 相似文献
4.
Nishino T Komori K Tsuchiya D Ishino Y Morikawa K 《Structure (London, England : 1993)》2001,9(3):197-204
BACKGROUND: Homologous recombination is a crucial mechanism in determining genetic diversity and repairing damaged chromosomes. Holliday junction is the universal DNA intermediate whose interaction with proteins is one of the major events in the recombinational process. Hjc is an archaeal endonuclease, which specifically resolves the junction DNA to produce two separate recombinant DNA duplexes. The atomic structure of Hjc should clarify the mechanisms of the specific recognition with Holliday junction and the catalytic reaction. RESULTS: The crystal structure of Hjc from the hyperthermophilic archaeon Pyrococcus furiosus has been determined at 2.0 A resolution. The active Hjc molecule forms a homodimer, where an extensive hydrophobic interface tightly assembles two subunits of a single compact domain. The folding of the Hjc subunit is clearly different from any other Holliday junction resolvases thus far known. Instead, it resembles those of type II restriction endonucleases, including the configurations of the active site residues, which constitute the canonical catalytic motifs. The dimeric Hjc molecule displays an extensive basic surface on one side, which contains many conserved amino acids, including those in the active site. CONCLUSIONS: The architectural similarity of Hjc to restriction endonucleases allowed us to construct a putative model of the complex with Holliday junction. This model accounts for how Hjc recognizes and resolves the junction DNA in a specific manner. Mutational and biochemical analyses highlight the importance of some loops and the amino terminal region in interaction with DNA. 相似文献
5.
Functional interactions between the holliday junction resolvase and the branch migration motor of Escherichia coli. 总被引:1,自引:0,他引:1 下载免费PDF全文
Homologous recombination generates genetic diversity and provides an important cellular pathway for the repair of double-stranded DNA breaks. Two key steps in this process are the branch migration of Holliday junctions followed by their resolution into mature recombination products. In E.coli, branch migration is catalysed by the RuvB protein, a hexameric DNA helicase that is loaded onto the junction by RuvA, whereas resolution is promoted by the RuvC endonuclease. Here we provide direct evidence for functional interactions between RuvB and RuvC that link these biochemically distinct processes. Using synthetic Holliday junctions, RuvB was found to stabilize the binding of RuvC to a junction and to stimulate its resolvase activity. Conversely, RuvC facilitated interactions between RuvB and the junction such that RuvBC complexes catalysed branch migration. The observed synergy between RuvB and RuvC provides new insight into the structure and function of a RuvABC complex that is capable of facilitating branch migration and resolution of Holliday junctions via a concerted enzymatic mechanism. 相似文献
6.
Biochemical analysis of replication factor C from the hyperthermophilic archaeon Pyrococcus furiosus 下载免费PDF全文
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya. 相似文献
7.
Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin 总被引:9,自引:0,他引:9
R C Conover A T Kowal W G Fu J B Park S Aono M W Adams M K Johnson 《The Journal of biological chemistry》1990,265(15):8533-8541
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo. 相似文献
8.
Methods are evaluated for the preservation of the hyperthermophile Pyrococcus furiosus . The use of glass capillary tubes stored over liquid nitrogen with dimethyl sulphoxide appears to be the preferred method of preservation. Lyophilization resulted in loss of viability and storage at room temperature and +4°C resulted in considerable loss of viability within 4 weeks. 相似文献
9.
Eon-Seok Lee Han-Woo Kim Dong-Eun Kim Yeon-Hee Kim Soo-Wan Nam Byung-Woo Kim Sung-Jong Jeon 《Biotechnology and Bioprocess Engineering》2013,18(2):375-381
Gene encoding for a putative glutamate decarboxylase (GAD: EC 4.1.1.15) from the hyperthermophilic archaeon Pyrococcus furiosus was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (PF1159) from P. furiosus showed some identity with other group II decarboxylases from an archaea and bacteria. The GAD from P. furiosus (PfGAD) was expressed in Escherichia coli, and the recombinant protein has a molecular mass of 41 kDa, determined by SDS-PAGE. The optimum temperature and pH for GAD activity were 75°C and 6.0, respectively. The half-life of heat inactivation was approximately 60 min at 90°C. The GAD activity was found to be dependent on various salts, such as CaCl2, NaCl, KCl, and NaBr, with an optimum concentration of 400 mM, but not (NH4)2SO4. PfGAD demonstrated activity against various substrates, such as l-glutamate, l-aspartate, and l-tyrosine. The results of the kinetics experiment indicated that l-aspartate was a better substrate of PfGAD than l-glutamate and Ltyrosine. 相似文献
10.
Operon prediction in Pyrococcus furiosus 总被引:1,自引:0,他引:1
Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three existing algorithms using a neural network (NN). These algorithms use intergenic distances, phylogenetic profiles, functional categories and gene-order conservation in their operon prediction. Our method takes as inputs the confidence scores of the three programs, and outputs a prediction of whether adjacent genes on the same strand belong to the same operon. In addition, we have applied Gene Ontology (GO) and KEGG pathway information to improve the accuracy of our algorithm. The parameters of this NN predictor are trained on a subset of all experimentally verified operon gene pairs of Bacillus subtilis. It subsequently achieved 86.5% prediction accuracy when applied to a subset of gene pairs for Escherichia coli, which is substantially better than any of the three prediction programs. Using this new algorithm, we predicted 470 operons in the P.furiosus genome. Of these, 349 were validated using DNA microarray data. 相似文献
11.
Maher MJ Ghosh M Grunden AM Menon AL Adams MW Freeman HC Guss JM 《Biochemistry》2004,43(10):2771-2783
The structure of prolidase from the hyperthermophilic archaeon Pyrococcus furiosus (Pfprol) has been solved and refined at 2.0 A resolution. This is the first structure of a prolidase, i.e., a peptidase specific for dipeptides having proline as the second residue. The asymmetric unit of the crystals contains a homodimer of the enzyme. Each of the two protein subunits has two domains. The C-terminal domain includes the catalytic site, which is centered on a dinuclear metal cluster. In the as-isolated form of Pfprol, the active-site metal atoms are Co(II) [Ghosh, M., et al. (1998) J. Bacteriol. 180, 4781-9]. An unexpected finding is that in the crystalline enzyme the active-site metal atoms are Zn(II), presumably as a result of metal exchange during crystallization. Both of the Zn(II) atoms are five-coordinate. The ligands include a bridging water molecule or hydroxide ion, which is likely to act as a nucleophile in the catalytic reaction. The two-domain polypeptide fold of Pfprol is similar to the folds of two functionally related enzymes, aminopeptidase P (APPro) and creatinase. In addition, the catalytic C-terminal domain of Pfprol has a polypeptide fold resembling that of the sole domain of a fourth enzyme, methionine aminopeptidase (MetAP). The active sites of APPro and MetAP, like that of Pfprol, include a dinuclear metal center. The metal ligands in the three enzymes are homologous. Comparisons with the molecular structures of APPro and MetAP suggest how Pfprol discriminates against oligopeptides and in favor of Xaa-Pro substrates. The crystal structure of Pfprol was solved by multiple-wavelength anomalous dispersion. The crystals yielded diffraction data of relatively high quality and resolution, despite the fact that one of the two protein subunits in the asymmetric unit was found to be significantly disordered. The final R and R(free) values are 0.24 and 0.28, respectively. 相似文献
12.
Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus 总被引:2,自引:0,他引:2 下载免费PDF全文
Cheng TC Ramakrishnan V Chan SI 《Protein science : a publication of the Protein Society》1999,8(11):2474-2486
A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number, 600 +/- 20 s(-1). Activity against other ZAX substrates (X = V, L, I, M, W, Y, F, N, A, S, H, K) revealed a broad specificity for neutral, aromatic, polar, and basic C-terminal residues. This broad specificity was confirmed by the C-terminal ladder sequencing of several synthetic and natural peptides, including porcine N-acetyl-renin substrate, for which we have observed (by MALDI-TOF MS) stepwise hydrolysis by PfuCP of up to seven residues from the C-terminus: Ac-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser. 相似文献
13.
The gene encoding a small heat shock protein (sHSP) from Pyrococcus furiosus was redesigned and chemically synthesized by using bacteria-preferred codons. The gene product was over-expressed in Escherichia coli BL21(DE)3 and purified to homogeneity. In the presence of this protein, the activities of Taq DNA polymerase, DNA restriction endonuclease HindIII and lysozyme were protected at elevated temperature, and also, thermal aggregation of lysozyme was prevented by this purified recombinant sHSP.Huayou Chen, Zhongmei Chu, Contributed equally to this work 相似文献
14.
Sevcenco AM Pinkse MW Bol E Krijger GC Wolterbeek HT Verhaert PD Hagedoorn PL Hagen WR 《Metallomics : integrated biometal science》2009,1(5):395-402
The tungsten metallome of the hyperthermophilic archaeon Pyrococcus furiosus has been investigated using electroanalytical metal analysis and native-native 2D-PAGE with the radioactive tungsten isotope (187)W (t(1/2) = 23.9 h). P. furiosus cells have an intracellular tungsten concentration of 29 μM, of which ca. 30% appears to be free tungsten, probably in the form of tungstate or polytungstates. The remaining 70% is bound by five different tungsten enzymes: formaldehyde ferredoxin oxidoreductase, aldehyde ferredoxin oxidoreductase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase and the tungsten-containing oxidoreductases WOR4 and WOR5. The membrane proteome of P. furiosus is devoid of tungsten. The differential expression, as measured by the tungsten level, of the five soluble tungsten enzymes when the cells are subjected to a cold-shock shows a strong correlation with previously published DNA microarray analyses. 相似文献
15.
16.
Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus 下载免费PDF全文
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. The purified preparation contained two major proteins (alpha and beta) in an approximate 1:1 ratio with a minimum molecular mass near 65 kDa and contained approximately 1 Ni and 4 Fe atoms/mol. The reduced enzyme gave rise to an electron paramagnetic resonance signal typical of the so-called Ni-C center of mesophilic NiFe-hydrogenases. Neither highly washed membranes nor the purified enzyme used NAD(P)(H) or P. furiosus ferredoxin as an electron carrier, nor did either catalyze the reduction of elemental sulfur with H(2) as the electron donor. Using N-terminal amino acid sequence information, the genes proposed to encode the alpha and beta subunits were located in the genome database within a putative 14-gene operon (termed mbh). The deduced sequences of the two subunits (Mbh 11 and 12) were distinctly different from those of the four subunits that comprise each of the two cytoplasmic NiFe-hydrogenases of P. furiosus and show that the alpha subunit contains the NiFe-catalytic site. Six of the open reading frames (ORFs) in the operon, including those encoding the alpha and beta subunits, show high sequence similarity (>30% identity) with proteins associated with the membrane-bound NiFe-hydrogenase complexes from Methanosarcina barkeri, Escherichia coli, and Rhodospirillum rubrum. The remaining eight ORFs encode small (<19-kDa) hypothetical proteins. These data suggest that P. furiosus, which was thought to be solely a fermentative organism, may contain a previously unrecognized respiratory system in which H(2) metabolism is coupled to energy conservation. 相似文献
17.
The hyperthermophilic archaeon Pyrococcus furiosus can utilize different carbohydrates, such as starch, maltose and trehalose. Uptake of alpha-glucosides is mediated by two different, binding protein-dependent, ATP-binding cassette (ABC)-type transport systems. The maltose transporter also transports trehalose, whereas the maltodextrin transport system mediates the uptake of maltotriose and higher malto-oligosaccharides, but not maltose. Both transport systems are induced during growth on their respective substrates. 相似文献
18.
The hyperthermophilic anaerobe Pyrococcus furiosus was found to grow on pyruvate as energy and carbon source. Growth was dependent on yeast extract (0.1%). The organism grew with doublings times of about 1 h up to cell densities of 1–2×108 cells/ml. During growth 0.6–0.8 mol acetate and 1.2–1.5 mol CO2 and 0.8 mol H2 were formed per mol of pyruvate consumed. The molar growth yield was 10–11 g cells(dry weight)/mol pyruvate. Cell suspensions catalyzed the conversion of 1 mol of pyruvate to 0.6–0.8 mol acetate, 1.2–1.5 mol CO2, 1.2 mol H2 and 0.03 mol acetoin. After fermentation of [3-14C]pyruvate the specific radioactivities of pyruvate, CO2 and acetate were equal to 1:0.01:1. Cellfree extracts contained the following enzymatic activities: pyruvate: ferredoxin (methyl viologen) oxidoreductase (0.2 U mg-1, T=60°C, with Clostridium pasteurianum ferredoxin as electron acceptor; 1.4 U mg-1 at 90°C, with methyl viologen as electron acceptor); acetyl-CoA synthetase (ADP forming) [acetyl-CoA+ADP+Piacetate+ATP+CoA] (0.34 U mg-1, T=90°C), and hydrogen: methyl viologen oxidoreductase (1.75 U mg-1). Phosphate acetyl-transferase activity, acetate kinase activity, and carbon monoxide:methyl viologen oxidoreductase activity could not be detected. These findings indicate that the archaebacterium P. furiosus ferments pyruvate to acetate, CO2 and H2 involving only three enzymes, a pyruvate:ferredoxin oxidoreductase, a hydrogenase and an acetyl-CoA synthetase (ADP forming).Non-standard abbreviations DTE
dithioerythritol
- MV
methyl viologen
- MOPS
morpholinopropane sulfonic acid
- Tricine
N-tris(hydroxymethyl)-methylglycine
Part of the work was performed at the Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karlvon-Frisch-Strasse, W-3550 Marburg/Lahn, Federal Republic of Germany 相似文献
19.
本文述及Pyrococcus furiosus的丙酮酸代谢、麦芽糖发酵(高温糖酵解途径)、由丙酮酸糖原异生途径、还原性末端产物--L-丙氨酸的形成和钨对代谢类型的影响等。 相似文献
20.
Overexpression and characterization of a prolyl endopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. 总被引:1,自引:0,他引:1 下载免费PDF全文
V J Harwood J D Denson K A Robinson-Bidle H J Schreier 《Journal of bacteriology》1997,179(11):3613-3618
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown. 相似文献