首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modified ODN's bearing C5‐substituted 2′‐deoxyuridine derivative were synthesized by a post‐synthetic modification with an unsymmetrical triamine. The effect of the C5‐substituent on the duplex formation with complementary DNA or RNA differed with the position of an imino group in the linker‐arms.  相似文献   

2.
Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the interaction between the C5 MTase from Haemophilus haemolyticus (M.HhaI) and an oligodeoxynucleotide duplex containing 2-H pyrimidinone, an analogue often referred to as zebularine and known to give rise to high-affinity complexes with MTases. X-ray crystallography has demonstrated the formation of a covalent bond between M.HhaI and the 2-H pyrimidinone-containing oligodeoxynucleotide. This observation enables a comparison between the mechanisms of action of 2-H pyrimidinone with other mechanism-based inhibitors such as FdC. This novel complex provides a molecular explanation for the mechanism of action of the anti-cancer drug zebularine.  相似文献   

3.
4.
Although many different methods are used for the identification of methylated heterocyclic bases in DNA not all of them possess the ability to discriminate N4-methylcytosine (m4C) and 5-methylcytosine (m5C). Therefore, some of the methods need additional reexamination. This paper reinvestigates some chromatographic systems (thin-layer chromatography, paper chromatography, electrophoresis) most widely used in the analysis of minor bases occurring in nucleic acids according to their ability to separate m4C and m5C. A simple procedure for the preparation of the sample and a chromatographic system for its analysis was developed. The recommended chromatographic systems may be used for the simultaneous separation of not only of m4C and m5C but also both methylated cytosines together with N6-methyladenine and 7-methylguanine.  相似文献   

5.
The thermodynamics of 5'-ATGCTGATGC-3' binding to its complementary DNA and RNA strands was determined in sodium phosphate buffer under varying conditions of temperature and salt concentration from isothermal titration calorimetry (ITC). The Gibbs free energy change, DeltaG degrees of the DNA hybridization reactions increased by about 6 kJ mol(-1) from 20 degrees C to 37 degrees C and exhibited heat capacity changes of -1.42 +/- 0.09 kJ mol(-1) K(-1) for DNA/DNA and -0.87 +/- 0.05 kJ mol(-1) K(-1) for DNA/RNA. Values of DeltaG degrees decreased non-linearly by 3.5 kJ mol(-1) at 25 degrees C and 6.0 kJ mol(-1) at 37 degrees C with increase in the log of the sodium chloride concentration from 0.10 M to 1.0 M. A near-linear relationship was observed, however, between DeltaG degrees and the activity coefficient of the water component of the salt solutions. The thermodynamic parameters of the hybridization reaction along with the heat capacity changes were combined with thermodynamic contributions from the stacking to unstacking transitions of the single-stranded oligonucleotides from differential scanning calorimetry (DSC) measurements, resulting in good agreement with extrapolation of the free energy changes to 37 degrees C from the melting transition at 56 degrees C.  相似文献   

6.
Background: In response to genotoxic stress, cells activate checkpoint pathways that lead to a transient cell cycle arrest that allows for DNA repair or to apoptosis, which triggers the demise of genetically damaged cells.Results: During positional cloning of the C. elegans rad-5 DNA damage checkpoint gene, we found, surprisingly, that rad-5(mn159) is allelic with clk-2(qm37), a mutant previously implicated in regulation of biological rhythms and life span. However, clk-2(qm37) is the only C. elegans clock mutant that is defective for the DNA damage checkpoint. We show that rad-5/clk-2 acts in a pathway that partially overlaps with the conserved C. elegans mrt-2/S. cerevisiae RAD17/S. pombe rad1(+) checkpoint pathway. In addition, rad-5/clk-2 also regulates the S phase replication checkpoint in C. elegans. Positional cloning reveals that the RAD-5/CLK-2 DNA damage checkpoint protein is homologous to S. cerevisiae Tel2p, an essential DNA binding protein that regulates telomere length in yeast. However, the partial loss-of-function C. elegans rad-5(mn159) and clk-2(qm37) checkpoint mutations have little effect on telomere length, and analysis of the partial loss-of-function of S. cerevisiae tel2-1 mutant failed to reveal typical DNA damage checkpoint defects.Conclusions: Using C. elegans genetics we define the novel DNA damage checkpoint protein RAD-5/CLK-2, which may play a role in oncogenesis. Given that Tel2p has been shown to bind to a variety of nucleic acid structures in vitro, we speculate that the RAD-5/CLK-2 checkpoint protein may act at sites of DNA damage, either as a sensor of DNA damage or to aid in the repair of damaged DNA.  相似文献   

7.
BACKGROUND: In response to genotoxic stress, cells activate checkpoint pathways that lead to a transient cell cycle arrest that allows for DNA repair or to apoptosis, which triggers the demise of genetically damaged cells. RESULTS: During positional cloning of the C. elegans rad-5 DNA damage checkpoint gene, we found, surprisingly, that rad-5(mn159) is allelic with clk-2(qm37), a mutant previously implicated in regulation of biological rhythms and life span. However, clk-2(qm37) is the only C. elegans clock mutant that is defective for the DNA damage checkpoint. We show that rad-5/clk-2 acts in a pathway that partially overlaps with the conserved C. elegans mrt-2/S. cerevisiae RAD17/S. pombe rad1(+) checkpoint pathway. In addition, rad-5/clk-2 also regulates the S phase replication checkpoint in C. elegans. Positional cloning reveals that the RAD-5/CLK-2 DNA damage checkpoint protein is homologous to S. cerevisiae Tel2p, an essential DNA binding protein that regulates telomere length in yeast. However, the partial loss-of-function C. elegans rad-5(mn159) and clk-2(qm37) checkpoint mutations have little effect on telomere length, and analysis of the partial loss-of-function of S. cerevisiae tel2-1 mutant failed to reveal typical DNA damage checkpoint defects. CONCLUSIONS: Using C. elegans genetics we define the novel DNA damage checkpoint protein RAD-5/CLK-2, which may play a role in oncogenesis. Given that Tel2p has been shown to bind to a variety of nucleic acid structures in vitro, we speculate that the RAD-5/CLK-2 checkpoint protein may act at sites of DNA damage, either as a sensor of DNA damage or to aid in the repair of damaged DNA.  相似文献   

8.
A B Lassar  B M Paterson  H Weintraub 《Cell》1986,47(5):649-656
Stable myoblast cell lines were isolated after a brief exposure of mouse fibroblasts (10T1/2 cells) to 5-azacytidine. We show that transfection of 10T1/2 cells with DNA from these azacytidine-induced myoblasts (or from mouse C2C12 myoblasts) results in myogenic conversion of approximately 1 in 15,000 transfected colonies. In contrast, transfection of 10T1/2 cells with DNA from nonmyogenic cells (parental 10T1/2 cell DNA) does not give rise to myoblast colonies. These results indicate that an azacytidine-induced structural modification (presumably demethylation) in the DNA of a single locus is sufficient to convert 10T1/2 cells into determined myoblasts.  相似文献   

9.
Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic-biomass (corncobs) and biomass-derived carbohydrates (tapioca flour) to produce water-soluble C5-C15 compounds was developed in a single reactor system. WO3-ZrO2 efficiently catalyzed the hydrolysis/dehydration of these feedstocks to 5-hydroxymethylfurfural and furfural, while the impregnation of WO3-ZrO2 with Pd allowed sequential aldolcondensation/hydrogenation of these furans to C5-C15 compounds. The highest C5-C15 yields of 14.8-20.3% were observed at a hydrolysis/dehydration temperature of 573 K for 5 min, an aldol-condensation temperature of 353 K for 30 h, and a hydrogenation temperature of 393 K for 6 h. The C5-C15 yield from tapioca flour was higher than that from corncobs (20.3% compared to 14.8%). Tapioca flour produced more C6/C9/C15, whereas corncobs generated more C5/C8/C13 compounds due to the presence of hemicellulose in the corncobs. These water-soluble organic compounds can be further converted to liquid alkanes with high cetane numbers for replacing diesel fuel in transportation applications.  相似文献   

10.
The 5-formyluracil (5-foU), a major mutagenic oxidative damage of thymine, is removed from DNA by Nth, Nei and MutM in Escherichia coli. However, DNA polymerases can also replicate past the 5-foU by incorporating C and G opposite the lesion, although the mechanism of correction of the incorporated bases is still unknown. In this study, using a borohydride-trapping assay, we identified a protein trapped by a 5-foU/C-containing oligonucleotide in an extract from E. coli mutM nth nei mutant. The protein was subsequently purified from the E. coli mutM nth nei mutant and was identified as KsgA, a 16S rRNA adenine methyltransferase. Recombinant KsgA also formed the trapped complex with 5-foU/C- and thymine glycol (Tg)/C-containing oligonucleotides. Furthermore, KsgA excised C opposite 5-foU, Tg and 5-hydroxymethyluracil (5-hmU) from duplex oligonucleotides via a β-elimination reaction, whereas it could not remove the damaged base. In contrast, KsgA did not remove C opposite normal bases, 7,8-dihydro-8-oxoguanine and 2-hydroxyadenine. Finally, the introduction of the ksgA mutation increased spontaneous mutations in E. coli mutM mutY and nth nei mutants. These results demonstrate that KsgA has a novel DNA glycosylase/AP lyase activity for C mispaired with oxidized T that prevents the formation of mutations, which is in addition to its known rRNA adenine methyltransferase activity essential for ribosome biogenesis.  相似文献   

11.
In order to detect possible m5C photoproducts, highly purified rat liver DNA-cytosine methyltransferase was used to specifically generate m5C with a radioactive methyl group. When these DNAs were subjected to a large dose (10 kJ/m2) of 254 nm or 302 nm ultraviolet light (UVB) to enhance the yield, two labeled photoproducts were detected and isolated by reverse phase HPLC after formic acid hydrolysis. Further studies using acetone as a triplet state sensitizer and UVB irradiation suggested that photoproduct II was activated via a triplet state while the more polar photoproduct I was not. Photoreversion of the purified photoproducts with 10 kJ/m2 254 nm light demonstrated the following reactions: Photoproduct I regenerated m5C, while photoproduct II is split and regenerated m5C and photoproduct I. These results suggest that photoproduct I is monomeric while photoproduct II dimeric, and from the latter's elution position possibly a cyclobutyl type dimer arising from a reaction with an adjacent cytosine. Using d[TTG] and d[Cm5CG] as models of typical sequences, irradiation with 10 kJ/m2 254 nm or 302 nm, respectively, gave rise to a small component having altered mobility in sequencing gels. The altered mobility trinucleotides were resistant to degradation by PI and micrococcal nucleases as expected from photodimerization of the pyrimidine bases. Furthermore, oligonucleotide substrates containing m5C were synthesized and shown to be susceptible to T4 endonuclease v action at locations consistent with d[Cm5C] photodimer formation when irradiated in the UVB range.  相似文献   

12.
13.
U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methanobacterium thermoautotrophicum, a thermophile with an optimal growth temperature of 65 degrees C. We report characterization of a putative DNA glycosylase from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The open reading frame was first identified through a genome sequencing project in our laboratory. The predicted product of 230 amino acids shares significant sequence homology to [4Fe-4S]-containing Nth/MutY DNA glycosylases. The histidine-tagged recombinant protein was expressed in Escherichia coli and purified. It is thermostable and displays DNA glycosylase activities specific to U/G and T/G mismatches with an uncoupled AP lyase activity. It also processes U/7,8-dihydro-oxoguanine and T/7,8-dihydro-oxoguanine mismatches. We designate it Pa-MIG. Using sequence comparisons among complete bacterial and archaeal genomes, we have uncovered a putative MIG protein from another hyperthermophilic archaeon, Aeropyrum pernix. The unique conserved amino acid motifs of MIG proteins are proposed to distinguish MIG proteins from the closely related Nth/MutY DNA glycosylases.  相似文献   

14.
Severe acute respiratory syndrome coronavirus (SARS-CoV) first appeared in Southern China in November 2002, and then quickly spread to 33 countries on five continents along international air travel routes. Although the SARS epidemic has been contained, there is a clear need for a safe and effective vaccine should an outbreak of a SARS-CoV infection reappear in human population. In this study, we tested four DNA-vaccine constructs: (1) pLL70, containing cDNA for the SARS-CoV spike (S) gene; (2) pcDNA-SS, containing codon-optimized S gene for SARS-CoV S protein (residues 12-1255) fused with a leader sequence derived from the human CD5 gene; (3) pcDNA-St, containing the gene encoding the N-portion of the codon-optimized S gene (residues 12-532) with the CD5 leader sequence; (4) pcDNA-St-VP22C, containing the gene encoding the N-portion of the codon-optimized S protein with the CD5 leader sequence fused with the C-terminal 138 amino acids of the bovine herpesvirus-1 (BHV-1) major tegument protein VP22. Each of these plasmids was intradermally administered to C57BL/6 mice in three separate immunizations. Analysis of humoral and cellular immune responses in immunized mice demonstrated that pcDNA-SS and pcDNA-St-VP22C are the most immunogenic SARS vaccine candidates.  相似文献   

15.
Infection of African green monkey kidney cells with type 5 adenovirus leads to the synthesis of two infected, cell-specific proteins with approximate molecular weights of 72,000 and 48,000, that bind specifically to single-stranded but not double-stranded DNA. The production of these two proteins was studied after infection with two DNA-negative adenovirus mutants belonging to different complementation groups (H5 ts36 and H5 ts 125). Both DNA binding proteins were detected in cells infected with either mutant at the permissive temperature (32 C) AND ALSO IN H5 ts36-infected cells at the nonpermissive temperature (39.5 C). In H5 ts125-infected cells at 39.5 C, however, less than 5% of the normal wild-type level of these DNA binding proteins was detectable. When H5 ts125-infected cells were labeled with radioactive leucine at 32 C and subsequently shifted to 39.5 C in the presence of unlabeled leucine (chase), the level of DNA binding proteins found in these infected cells was markedly reduced compared to cultures not shifted to 39.5 C. These data suggest that the DNA binding proteins themselves were temperature sensitive. This conclusion was confirmed by experiments in which the DNA binding proteins were eluted from DNA cellulose with buffers of increasing temperatures (thermal elution). The H5 ts 125 proteins were shown to elute at lower temperatures than either wild-type or H5 ts36 proteins. These results are taken to indicate that the H5 ts125 mutant codes for a DNA binding protein that is thermolabile for continued binding to single-stranded DNA.  相似文献   

16.
The nucleotide (nt) sequence of the 5508-nt intergenic spacer (IGS), between the 25S- and the 18S-coding regions of Cucurbita maxima rDNA, was determined. The fragment sequenced is 6142 nt long and includes 472 nt of 25S- and 162 nt of 18S-coding regions. The IGS has a complex primary structure, composed of five repetitive families (A-E) and three unique domains. It is dominated by the presence of nine, tandemly-repeating units of approximately 250 nt (repeat D), each unit containing four copies of an internal subrepeat (repeat E). The repetitive units show sequence variability consisting of nt changes, insertions and deletions. Upstream of the nine D repeats and between two copies of the B repeat is a 575-nt region, highly G + C rich (83%) and heavily biased toward C (58%) in the sense strand. Within this region are six repetitive units, averaging 42 nt (repeat C) each, containing but a single A nt. Downstream from the terminus of the 25S-coding sequence, are two tandem copies of the 103-nt A repeat. The IGS of C. maxima is longer and more complex than that of other plant IGSs described to date. The 600 nt at the 5' portion of cucurbit IGS is more conserved in evolution than the remainder, as revealed by comparison of C. maxima and C. pepo IGS restriction maps and by nucleotide sequence comparison of C. maxima and Cucumis sativa IGSs.  相似文献   

17.
Methylated cytosine (m5C) in DNA appears to be an important modulator of the expression of some genes. There are several lines of evidence that gradual loss of m5C is relevant to in vitro cellular ageing: m5C loss occurs during cell culture; m5C loss is detectable at an early stage of culture; m5C loss appears to be related to cell division not just duration in culture; the rate of m5C loss appears to be related to in vitro lifespan of the cell strain in question; and the total loss of m5C during an in vitro lifespan is significant by comparison with induced-changes in m5C levels which effect cell growth, or cause cell-death in culture. Progressive loss of m5C in dividing cells may thus produce the multi-step cell division "clock" which underlies the Hayflick phenomenon.  相似文献   

18.
Cenarchaeum symbiosum, an archaeon which lives in specific association with a marine sponge, belongs to a recently recognized nonthermophilic crenarchaeotal group that inhabits diverse cold and temperate environments. Nonthermophilic crenarchaeotes have not yet been obtained in laboratory culture, and so their phenotypic characteristics have been inferred solely from their ecological distribution. Here we report on the first protein to be characterized from one of these organisms. The DNA polymerase gene of C. symbiosum was identified in the vicinity of the rRNA operon on a large genomic contig. Its deduced amino acid sequence is highly similar to those of the archaeal family B (alpha-type) DNA polymerases. It shared highest overall sequence similarity with the crenarchaeal DNA polymerases from the extreme thermophiles Sulfolobus acidocaldarius and Pyrodictium occultum (54% and 53%, respectively). The conserved motifs of B (alpha-)-type DNA polymerases and 3'-5' exonuclease were identified in the 845-amino-acid sequence. The 96-kDa protein was expressed in Escherichia coli and purified with affinity tags. It exhibited its highest specific activity with gapped-duplex (activated) DNA as the substrate. Single-strand- and double-strand-dependent 3'-5' exonuclease activity was detected, as was a marginal 5'-3' exonuclease activity. The enzyme was rapidly inactivated at temperatures higher than 40 degrees C, with a half-life of 10 min at 46 degrees C. It was found to be less thermostable than polymerase I of E. coli and is substantially more heat labile than its most closely related homologs from thermophilic and hyperthermophilic crenarchaeotes. Although phylogenetic studies suggest a thermophilic ancestry for C. symbiosum and its relatives, our biochemical analysis of the DNA polymerase is consistent with the postulated nonthermophilic phenotype of these crenarchaeotes, to date inferred solely from their ecological distribution.  相似文献   

19.
We have examined the effect of a naphthylquinoline triplex-binding ligand on the formation of intermolecular triplexes on DNA fragments containing the target sites A6G6xC6T6 and G6A6xT6C6. The ligand enhances the binding of T6C2, but not T2C6, to A6G6xC6T6 suggesting that it has a greater effect on TxAT than C+xGC triplets. The complex with T6C2 is only stable below pH 6.0, confirming the requirement for protonation of the third strand cytosines. Antiparallel triplexes with GT-containing oligonucleotides are also stabilised by the ligand. The complex between G5T5 and A6G6xC6T6 is stabilised by lower ligand concentrations than that between T5G5 and G6A6xC6T6. The ligand does not promote the interaction with GT-containing oligonucleotides which have been designed to bind in a parallel orientation. Although the formation of antiparallel triplexes is pH independent, we find that the ligand has a greater stabilising effect at lower pH, suggesting that the active species is protonated. The ligand does not promote the binding of antiparallel GA-containing oligonucleotides at pH 7.5 but induces the interaction between A5G5 and G6A6xT6C6 at pH 5.5. Ethidium bromide does not promote the formation of any of these triplexes and destabilises the interaction of acridine-linked pyrimidine-containing third strands with these target sites.  相似文献   

20.
In this work, we used antibodies against histone H3 trimethylated at lysine 9 (H3K9m3); against histone H4 acetylated at lysines 5, 8, 12, and 16 (H4ac); and against DNA methylated at 5C cytosine (m5C) to study the presence and distribution of these markers in the genome of the isopod crustacean Asellus aquaticus. The use of these 3 antibodies to immunolabel spermatogonial metaphases yields reproducible patterns on the chromosomes of this crustacean. The X and Y chromosomes present an identical banding pattern with each of the antibodies. The heterochromatic telomeric regions and the centromeric regions are rich in H3K9m3, but depleted in m5C and H4ac. Thus, m5C does not seem to be required to stabilize the silence of these regions in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号