首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes. A series of 10 C5-modified analogues of 2'-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality. For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties. The imidazole function was conjugated to these C5-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid). The substrate properties of the nucleotides (fully replacing dTTP) with TAQ polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments. 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates. In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates. The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XBAI and by mass spectrometry of the PCR products.  相似文献   

2.
The triplex form of DNA is of interest because of a possible biological role as well as the potential therapeutic use of this structure. In this paper the stabilizing effects of two intercalating drugs, ethidium and the quinoxaline derivative 9-OH-B220, on DNA triplexes have been studied by thermal denaturation measurements. The corresponding duplex structures of the DNA triplex systems investigated are either A-tract or normal B-DNA. The largest increases in the triplex melting temperatures caused by the intercalators were found for sequences having A-tract duplex structures. Inserting a single base pair with an N2-amino group in the minor groove, e.g. a G-C pair, breaks up the A-tract duplex structure and also reduces the stabilizing effect of the drugs on the triplex melting temperatures. The large drug-induced increase in triplex melting temperature for complexes having an original duplex A-tract structure is correlated with a low initial melting point of the triplex, not with the triplex being unusually stable in the presence of the drug. Hence, we conclude that the large thermal stabilizing effect exhibited by ethidium and 9-OH-B220 on dTn.dAn-dTn triplexes is partly caused by the intercalators breaking up the intrinsic A-tract structure of the underlying duplex.  相似文献   

3.
Delta crystallins and their nucleic acids   总被引:15,自引:0,他引:15  
  相似文献   

4.
5.
We have developed an artificial protein scaffold, herewith called a protein vector, which allows linking of an in-vitro synthesised protein to the nucleic acid which encodes it through the process of self-assembly. This protein vector enables the direct physical linkage between a functional protein and its genetic code. The principle is demonstrated using a streptavidin-based protein vector (SAPV) as both a nucleic acid binding pocket and a protein display system. We have shown that functional proteins or protein domains can be produced in vitro and physically linked to their DNA in a single enzymatic reaction. Such self-assembled protein-DNA complexes can be used for protein cloning, the cloning of protein affinity reagents or for the production of proteins which self-assemble on a variety of solid supports. Self-assembly can be utilised for making libraries of protein-DNA complexes or for labelling the protein part of such a complex to a high specific activity by labelling the nucleic acid associated with the protein. In summary, self-assembly offers an opportunity to quickly generate cheap protein affinity reagents, which can also be efficiently labelled, for use in traditional affinity assays or for protein arrays instead of conventional antibodies.  相似文献   

6.
Peptide nucleic acids and their structural modifications   总被引:3,自引:0,他引:3  
Peptide (polyamide) analogues of nucleic acids (PNAs) make very promising groups of natural nucleic acid (NA) ligands and show many other interesting properties. Two types of these analogues may be highlighted as particularly interesting: the first, containing a polyamide with alternating peptide/pseudopeptide bonds as its backbone, consisting of N-(aminoalkyl)amino-acid units (type I), with nucleobases attached to the backbone nitrogen with the carboxyalkyl linker; and the second, containing a backbone consisting of amino-acid residues carrying the nucleobases in their side chains (type II). So far, these two groups have been studied most intensively. The paper describes main groups of peptide nucleic acids, as well as various other amino acid-derived nucleobase monomers or their oligomers, which were either studied in order to determine their hybridisation to nucleic acids, or only discussed with respect to their potential usefulness in the oligomerisation and nucleic acids binding.  相似文献   

7.
8.
Jain SS  Polak M  Hud NV 《Nucleic acids research》2003,31(15):4608-4615
Small molecules that intercalate in DNA and RNA are powerful agents for controlling nucleic acid structural transitions. We recently demonstrated that coralyne, a small crescent-shaped molecule, can cause the complete and irreversible disproportionation of duplex poly(dA)·poly(dT) into triplex poly(dA)·poly(dT)·poly(dT) and a poly(dA) self- structure. Both DNA secondary structures that result from duplex disproportionation are stabilized by coralyne intercalation. In the present study, we show that the kinetics and thermodynamics of coralyne-driven duplex disproportionation strongly depend on oligonucleotide length. For example, disproportionation of duplex (dA)16·(dT)16 by coralyne reverts over the course of hours if the sample is maintained at 4°C. Coralyne-disproportioned (dA)32· (dT)32, on the other hand, only partially reverts to the duplex state over the course of days at the same temperature. Furthermore, the equilibrium state of a (dA)16·(dT)16 sample in the presence of coralyne at room temperature contains three different secondary structures [i.e. duplex, triplex and the (dA)16 self-structure]. Even the well-studied process of triplex stabilization by coralyne binding is found to be a length-dependent phenomenon and more complicated than previously appreciated. Together these observations indicate that at least one secondary structure in our nucleic acid system [i.e. duplex, triplex or (dA)n self-structure] binds coralyne in a length-dependent manner.  相似文献   

9.
1. Under relatively mild conditions, nucleic acids and their constituents were trinitrophenylated with 2,4,6-trinitrobenzenesulfonate (TNBS) in aqueous solution (pH 8-11), yielding reddish-orange trinitrophenyl (TNP) derivatives. Guanine residues were trinitrophenylated on the base residues at the 2-amino group (N2-TNP derivatives), and in addition, 2'- and 3'-hydroxyl groups of the ribose moieties of nucleosides or nucleotides were trinitrophenylated to form Meisenheimer complexes. 2. The preparation of TNP derivatives (N2-TNP-guanine, -guanosine, N2, O-bis-TNP-guanosine, O-TNP-guanosine, -adenosine, -cytidine , and -uridine), their rates of formation, absorption spectra (UV, visible, and infrared), molar extinction coefficients, Rf value, electrophoretic mobilities, and stability in acid or alkaline solution, are presented. 3. Trinitrophenylation of several kinds of nucleic acid was investigated. Calf thymus DNA and yeast transfer RNA showed a resistance to trinitrophenylation compared to guanosine 3'(2')-phosphate, yeast RNA or denatured calf thymus DNA. TNP-RNA showed resistance to the action of ribonucleases T1 and T2 [EC 3.1.4.8 and 3.1.4.23]. 4. Trinitrophenylation reactions using 2,4,6-trinitrochlorobenzene and 2,4,6-trinitrofluorobenzene were compared with that using TNBS as regards specificity and reaction rate.  相似文献   

10.
11.
12.
Depending on the HIV-1 isolate, MN or BH10, the nucleocapsid protein, NCp7, corresponds to a 55- or 71-amino acid length product, respectively. The MN NCp7 contains a single Trp residue at position 37 in the distal zinc finger motif, and the BH10 NCp7 contains an additional Trp, at position 61 in the C-terminal chain. The time-resolved intensity decay parameters of the zinc-saturated BH10 NCp7 were determined and compared to those of single-Trp-containing derivatives. The fluorescence decay of BH10 NCp7 could be clearly represented as a linear combination (with respect to both lifetimes and fractional intensities) of the individual emitting Trp residues. This suggested the absence of interactions between the two Trp residues, a feature that was confirmed by molecular modeling and fluorescence energy transfer studies. In the presence of tRNAPhe, taken as a RNA model, the same conclusions hold true despite the large fluorescence decrease induced by the binding of tRNAPhe. Indeed, the fluorescence of Trp37 appears almost fully quenched, in keeping with a stacking of this residue with the bases of tRNAPhe. Despite the multiple binding sites in tRNAPhe, the large prevalence of ultrashort lifetimes, associated with the stacking of Trp37, suggests that this stacking constitutes a major feature in the binding process of NCp7 to nucleic acids. In contrast, Trp61 only stacked to a small extent with tRNAPhe. The behavior of this residue in the tRNAPhe-NCp7 complexes appeared to be rather heterogeneous, suggesting that it does not constitute a major determinant in the binding process. Finally, our data suggested that the binding of NCp7 proteins from the two HIV-1 strains to nonspecific nucleic acid sequences was largely similar.  相似文献   

13.
The following new compounds were prepared and characterized: N-benzyl-oxycarbonyl-O-(tetra-O-acetyl-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (1) and L-threonine methyl ester (2), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-serine amide (3), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-threonine methyl ester (4) and L-threonine amide (5), N-benzyloxycarbonyl-O-(tri-O-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (6), and N-benzyloxycarbonyl-O-(2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine amide (7). Although various modifications of the Koenigs-Knorr synthesis were used, the best, over-all yields of the deacetylated dipeptide derivatives were only 5–10%. Although the products are alkali-labile, deacetylation was accomplished with methanolic ammonia. Of the deacetylated products, the threonine derivatives (4 and 5) were more rapidly hydrolyzed by acids than phenyl β-D-glucopyranoside, which in turn was more rapidly cleaved than the serine derivatives (3 and 7). The stabilities of 3, 4, 5, and 7 to sodium hydroxide and sodium borohydride were similar, and essentially complete β-elimination of the glycosyl residue occurred for the amide derivatives (3, 5, and 7). For the ester derivative 4, pH 9 was optimal; above this pH, ester hydrolysis was more rapid than β-elimination, and the resulting carboxyl derivatives did not undergo β-elimination. Under optimal conditions with sodium borohydride, the β-elimination reaction was complete, but the corresponding alanine and α-aminobutyric acid residues were not formed; presumably reductions to the amino alcohols occurred. A mechanism for the β-elimination is proposed.  相似文献   

14.
This report investigates the effect of DNA length and the presence of an anchoring group on the assembly of presynthesized oligonucleotides at a gold surface. The work seeks to advance fundamental insight into issues that impact the structure and behavior of surface-immobilized DNA layers, as in, for instance, DNA microarray and biosensor devices. The present study contrasts immobilization of single-stranded DNA (ssDNA) containing a terminal, 5' hexanethiol anchoring group with that of unfunctionalized oligonucleotides for lengths from 8 to 48 bases. Qualitatively, the results indicate that the thiol anchoring group strongly enhances oligonucleotide immobilization, but that the enhancement is reduced for longer strand lengths. Interestingly, examination of the probe coverage as a function of strand length suggests that adsorbed thiol-ssDNA oligonucleotides shorter than 24 bases tend to organize in end-tethered, highly extended configurations for which the long-term surface coverage is largely independent of oligonucleotide length. For strands longer than 24 bases, the surface coverage begins to decrease notably with probe length. The decrease is consistent with a less ordered arrangement of the DNA chains, presumably reflecting increasingly polymeric behavior.  相似文献   

15.
Guanine-rich polynucleotides such as poly(dG), oligo(dG)12-18 or poly(rG) were shown to exert a strong inhibitory effect on vimentin filament assembly and also to cause disintegration of preformed filaments in vitro. Gold-labeled oligo(dG)25 was preferentially localized at the physical ends of the aggregation and disaggregation products and at sites along filaments with a basic periodicity of 22.7 nm. Similar effects were observed with heat-denatured eukaryotic nuclear DNA or total rRNA, although these nucleic acids could affect filament formation and structure only at ionic strengths lower than physiological. However, whenever filaments were formed or stayed intact, they appeared associated with the nucleic acids. These electron microscopic observations were corroborated by sucrose gradient analysis of complexes obtained from preformed vimentin filaments and radioactively labeled heteroduplexes. Among the duplexes of the DNA type, particularly poly(dG).poly(dC), and, of those of the RNA type, preferentially poly(rA).poly(rU), were carried by the filaments with high efficiency into the pellet fraction. Single-stranded 18S and 28S rRNA interacted only weakly with vimentin filaments. Nevertheless, in a mechanically undisturbed environment, vimentin filaments could be densely decorated with intact 40S and 60S ribosomal subunits as revealed by electron microscopy. These results indicate that, in contrast to single-stranded nucleic acids with their compact random coil configuration, double-stranded nucleic acids with their elongated and flexible shape have the capability to stably interact with the helically arranged, surface-exposed amino-terminal polypeptide chains of vimentin filaments. Such interactions might be of physiological relevance in regard to the transport and positioning of nucleic acids and nucleoprotein particles in the various compartments of eukaryotic cells. Conversely, nucleic acids might be capable of affecting the cytoplasmic organization of vimentin filament networks through their filament-destabilizing potentials.  相似文献   

16.
17.
18.
A simple theoretical analysis shows that specificity of double-stranded DNA (dsDNA) targeting by homopyrimidine peptide nucleic acids (hpyPNAs) is a kinetically controlled phenomenon. Our computations give the optimum conditions for sequence-specific targeting of dsDNA by hpyPNAs. The analysis shows that, in agreement with the available experimental data, kinetic factors play a crucial role in the selective targeting of dsDNA by hpyPNAs. The selectivity may be completely lost if PNA concentration is too high and/or during prolonged incubation of dsDNA with PNA. However, quantitative estimations show that the experimentally observed differences in the kinetic constants for hpyPNA binding with the correct and mismatched DNA sites are sufficient for sequence-specific targeting of long genomic DNA by hpyPNAs with a high yield under appropriate experimental conditions. Differential dissociation of hpyPNA/dsDNA complexes is shown to enhance the selectivity of DNA targeting by PNA.  相似文献   

19.
Conventional genetic approaches have provided a powerful tool in the study of proteins. However, these techniques often preclude selective manipulation of temporal and spatial protein functions, which is crucial for the investigation of dynamic cellular processes. To overcome these limitations, a small molecule-based novel technology termed "PROteolysis TArgeting ChimeraS (PROTACs)" has been developed, targeting proteins for degradation at the post-translational level. Despite the promising potential of PROTACs to serve as molecular probes of complex signaling pathways, their design has not been generalized for broad application. Here, we present the first generalized approach for PROTAC design by fine-tuning the distance between the two participating partner proteins, the E3 ubiquitin ligase and the target protein. As such, we took a chemical approach to create estrogen receptor (ER)-α targeting PROTACs with varying linker lengths and the loss of the ER in cultured cells was monitored via western blot and fluorometric analyses. We found a significant effect of chain length on PROTAC efficacy, and, in this case, the optimum distance between the E3 recognition motif and the ligand was a 16 atom chain length. The information gathered from this experiment may offer a generalizable PROTAC design strategy to further the expansion of the PROTAC toolbox, opening new possibilities for the broad application of the PROTAC strategy in the study of multiple signaling pathways.  相似文献   

20.
Because of a set of exceptional chemical, physical, and biological properties, polyamide or peptide nucleic acids (PNAs) hold a distinctive position among various synthetic ligands designed for DNA-targeting purposes. Cationic pyrimidine PNAs (cpyPNAs) represent a special group of PNAs, which effectively form strand invasion triplexes with double-stranded DNA (dsDNA) also known as P-loops. Extraordinary stability of the invasion triplexes and high sequence specificity of their formation combined with local opening of the DNA double helix within the P-loops make these complexes very attractive for sequence-specific manipulation with dsDNA. Important for applications is the fact that the discrimination between correct and mismatched binding sites in dsDNA by cpyPNAs is a nonequilibrium, kinetically controlled process. Therefore, a careful choice of experimental conditions that are optimal for the kinetic discrimination of correct versus mismatched cpyPNA binding is crucial for sequence-specific recognition of dsDNA by cpyPNAs. The experimental and theoretical data presented make it possible to select those solution parameters and cpyPNA constructions that are most favorable for sequence specificity without compromising the affinity of dsDNA targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号