首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loganathan D  Aich U 《Glycobiology》2006,16(4):343-348
Elucidation of the intra- and intermolecular carbohydrate-protein interactions would greatly contribute toward obtaining a better understanding of the structure-function correlations of the protein-linked glycans. The weak interactions involving C-H...O have recently been attracting immense attention in the domain of biomolecular recognition. However, there has been no report so far on the occurrence of C-H...O hydrogen bonds in the crystal structures of models and analogs of N-glycoproteins. We present herein an analysis of C-H...O interactions in the crystal structures of all N-glycoprotein linkage region models and analogs. The study reveals a cooperative network of bifurcated hydrogen bonds consisting of N-H...O and C-H...O interactions seen uniquely for the models. The cooperative network consists of two antiparallel chains of bifurcated hydrogen bonds, one involving N1-H, C2'-H and O1' of the aglycon moiety and the other involving N2-H, C1-H and O1' of the sugar. Such bifurcated hydrogen bonds between the core glycan and protein are likely to play an important role in the folding and stabilization of proteins.  相似文献   

2.
4,6-O-Butylidene-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine was synthesized and characterized using analytical, spectral and single-crystal X-ray diffraction methods. 1H and 13C NMR studies showed the presence of the beta-anomer, which has also been confirmed by the crystal structure. The molecular structure of this compound showed the presence of the tridentate ONO ligation-core. Both precursors, 4,6-O-butylidene-alpha-D-glucopyranose and 4,6-O-butylidene-beta-D-glucopyranosylamine were characterized using single crystal X-ray diffraction. The alpha-anomeric nature of the former and beta-anomeric nature of the latter were proposed based on 1H NMR studies and were confirmed by determining the crystal structures. In addition, the crystal structure of 4,6-O-butylidene-beta-D-glucopyranosylamine revealed the C-1-N-glycosylation. In all the three molecules, the saccharide unit exhibits a 4C(1) chair conformation. In the lattice, the molecules are connected by hydrogen-bond interactions. The conformation of 4,6-O-butylidene-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine is stabilized via an O-H...N intramolecular interaction, and each molecule in the lattice interacts with three neighboring molecules through hydrogen bonds of the type O-H...O and C-H...O.  相似文献   

3.
Crystal structures are reported of cycloamylose containing 26 D-glucose residues (CA26, cyclohexaicosaose, C156H260O130) in complexes with undecanoic acid (CA26 x 2C10H21COOH x 34.95 H2O, orthorhombic P2(1)2(1)2(1), one CA26 and two bound undecanoic acids F1 and F2 in the asymmetric unit, resolution 0.95 angstroms) and with dodecanol ((CA26)(0.5) x C12H25OH x 32.0H2O, monoclinic C2, half a CA26 binding one dodecanol, A, in the asymmetric unit, resolution 1.0 angstroms). The macrocycle of CA26 is folded like the figure '8' into two 10 D-glucoses long left-handed V-amylose helices forming approximately 5A wide V-channels that are occupied by undecanoic acid (F1, F2) or dodecanol (A) as guest molecules. The functional head groups of the guests near the O(6) ends of the V-channels are hydrogen bonded with d-glucose O(6)n-H; the aliphatic termini beyond C(9) protrude from the O(2), O(3) ends. Parts of the aliphatic chains enclosed in the V-channels are all-trans except for one torsion angle each (approximately 130 degrees ) in undecanoic acid molecules F1 and F2. There are several (guest)C-H...O hydrogen bonds to O(4) and O(6) of CA26 in both complexes, and H...H van der Waals interactions with d-glucose C(3)-H and C(5)-H dominate. C(5)-H determine the position of the aliphatic chains of undecanoic acid F1 and of dodecanol A in contrast to F2 where both C(3)-H and C(5)-H contribute equally, probably because the V-channel is narrower than in F1 and in dodecanol. Complexes of polymeric V-amylose with fatty acids and alcohols studied by X-ray fiber diffraction could not provide the here described high resolution.  相似文献   

4.
Cycloamylose containing 26 glucose residues (cyclohexaicosaose, CA26) crystallized from water and 30% (v/v) polyethyleneglycol 400 in the orthorhombic space group P2(1)2(1)2(1) in the highly hydrated form CA26.32.59 H(2)O. X-ray analysis of the crystals at 0.85 A resolution shows that the macrocycle of CA26 is folded into two short left-handed V-amylose helices in antiparallel arrangement and related by a twofold rotational pseudosymmetry as reported recently for the (CA26)(2).76.75 H(2)O triclinic crystal form [Gessler, K. et al. Proc. Natl. Acad. Sci. USA 1999, 96, 4246-4251]. In the orthorhombic crystal form, CA26 molecules are packed in motifs reminiscent of V-amylose in hydrated and anhydrous forms. The intramolecular interface between the V-helices in CA26 is dictated by formation of an extended network of interhelical C-H...O hydrogen bonds; a comparable molecular arrangement is also evident for the intermolecular packing, suggesting that it is a characteristic feature of V-amylose interaction. The hydrophobic channels of CA26 are filled with disordered water molecules arranged in chains and held in position by multiple C-H...O hydrogen bonds. In the orthorhombic and triclinic crystal forms, the structures of CA26 molecules are equivalent but the positions of the individual water molecules are different, suggesting that the patterns of water chains are perturbed even by small structural changes associated with differences in packing arrangements in the two crystal lattices rather than with differences in the CA26 geometry.  相似文献   

5.
We report herein the first crystal structures of (4-carboxy-1,3-thiazolidin-2-yl)pentitols [2-(polyhydroxyalkyl)thiazolidine-4-carboxylic acids], condensation products of l-cysteine with d-galactose and d-mannose: 2-(d-galacto-pentahydroxypentyl)thiazolidine-4-carboxylic acid hydrate, Gal-Cys·H(2)O (1), and 2-(d-manno-pentahydroxypentyl)thiazolidine-4-carboxylic acid hydrate, Man-Cys·H(2)O (2). In 1 and 2 the compounds crystallize as zwitterions, with the carboxylic groups deprotonated and the thiazolidine N atoms protonated. The sugar moiety and carboxylate group are in a cis configuration relative to the thiazolidinium ring, which adopts different conformation: twisted (T) on C(β)-S in 1, and S-puckered envelope (E) in 2. The carbon chain of the galactosyl/mannosyl moiety remains in an extended zig-zag conformation. The orientation of the sugar O2 atom with respect to the thiazolidinium S and N atoms is trans-gauche in 1 and gauche-gauche in 2. The molecular conformation is stabilized by the intramolecular N-H?O(Cys) contacts in both 1 and 2 and by the additional N-H?O(Man) interaction in 2. The crystal packing of orthorhombic 1 and monoclinic 2 is determined mainly by N/O/C-H?O hydrogen bonds forming ribbons linked to each other by direct and water-mediated O/C-H?O/S contacts.  相似文献   

6.
The crystal structure of beta-D-glucopyranosyl-(1-->4)-alpha-D-glucopyranose (alpha-cellobiose) in a complex with water and NaI was determined with Mo K(alpha) radiation at 150 K to R=0.027. The space group is P2(1) and unit cell dimensions are a=9.0188, b=12.2536, c=10.9016 A, beta=97.162 degrees. There are no direct hydrogen bonds among cellobiose molecules, and the usual intramolecular hydrogen bond between O-3 and O-5' is replaced by a bridge involving Na+, O-3, O-5', and O-6'. Both Na+ have sixfold coordination. One I(-) accepts six donor hydroxyl groups and three C-H***I(-) hydrogen bonds. The other accepts three hydroxyls, one Na+, and five C-H***I(-) hydrogen bonds. Linkage torsion angles phi(O-5) and psi(C-5) are -73.6 and -105.3 degrees, respectively (phi(H)=47.1 degrees and psi(H)=14.6 degrees ), probably induced by the Na+ bridge. This conformation is in a separate cluster in phi,psi space from most similar linkages. Both C-6-O-H and C-6'-O-H are gg, while the C-6'-O-H groups from molecules not in the cluster have gt conformations. Hybrid molecular mechanics/quantum mechanics calculations show <1.2 kcal/mol strain for any of the small-molecule structures. Extrapolation of the NaI cellobiose geometry to a cellulose molecule gives a left-handed helix with 2.9 residues per turn. The energy map and small-molecule crystal structures imply that cellulose helices having 2.5 and 3.0 residues per turn are left-handed.  相似文献   

7.
Crystals of 5-fluorouridine (5FUrd) have unit cell dimensions a = 7.716(1), b = 5.861(2), c = 13.041(1)A, alpha = gamma = 90 degrees, beta = 96.70 degrees (1), space group P2(1), Z = 2, rho obs = 1.56 gm/c.c and rho calc = 1574 gm/c.c The crystal structure was determined with diffractometric data and refined to a final reliability index of 0.042 for the observed 2205 reflections (I > or = 3sigma). The nucleoside has the anti conformation [chi = 53.1(4) degrees] with the furanose ring in the favorite C2'-endo conformation. The conformation across the sugar exocyclic bond is g+, with values of 49.1(4) and -69.3(4) degrees for phi(theta c) and phi (infinity) respectively. The pseudorotational amplitude tau(m) is 34.5 (2) with a phase angle of 171.6(4) degrees. The crystal structure is stabilized by a network of N-H...O and O-H...O involving the N3 of the uracil base and the sugar 03' and 02' as donors and the 02 and 04 of the uracil base and 03' oxygen as acceptors respectively. Fluorine is neither involved in the hydrogen bonding nor in the stacking interactions. Our studies of several 5-fluorinated nucleosides show the following preferred conformational features: 1) the most favored anti conformation for the nucleoside [chi varies from -20 to + 60 degrees] 2) an inverse correlation between the glycosyl bond distance and the chi angle 3) a wide variation of conformations of the sugar ranging froni C2'-endo through C3'-endo to C4'-exo 4) the preferred g+ across the exocyclic C4'-C5' bond and 5) no role for the fluorine atom in the hydrogen bonding or base stacking interactions.  相似文献   

8.
Several new N1-substituted uncommon purine nucleosides, including doridosine (1-methyl-isoguanosine; m-iG), 1-allyl-isoguanosine (a-iG) and 1-allyl-xanthosine (a-X), have been synthesized and tested as agonists for the adenosine receptors. Some have smooth muscle relaxant or negative chronotropic activities. The X-ray crystal structure of these compounds has been determined at atomic resolution in order to understand the structure-activity relationship. The structures were solved by direct methods and refined by full-matrix least-squares refinement procedure. The crystallographic parameters are: a-iG, space group P2(1), a = 10.573 (1) A, b = 21.955 (2) A, c = 14.360 (1) A, beta = 110.65 (1) degree, no. of 3 sigma Fo's = 4585, R = 0.047; a-X, space group P2(1)2(1)2(1), a = 16.015 (2) A, b = 16.239 (1) A, (1) A, c = 5.3723 (5) A, no. of 3 sigma Fo's = 1169, R = 0.031. In the a-iG crystal, there are 4 independent molecules (with different conformation) per asymmetric unit. While all 4 molecules adopt anti chi CN glycosyl torsion angle, their riboses have 3 distinct puckers (C2'-exo, C2'-endo and C1'-exo). In contrast, the a-X structure adopts a syn chi CN glycosyl torsion angle, which is stabilized by an intramolecular hydrogen bond between the N3 of purine base and the O5' of the ribose (in C2'-endo pucker). Both purine bases (a-iG and a-X) are mainly in the keto tautomer form. For the isoguanine base, the averaged N1-C2 bond distance (1.42 A) is significantly longer than that (1.375 A) of the guanine base. For the xanthine base, N3 nitrogen has an imino proton attached which is unambiguously located in the electron density map. The surprising flexibility in the ribose ring of these N1-substituted uncommon purine nucleosides suggests that the ribose moiety may not participate in the binding of nucleoside to the adenosine receptors.  相似文献   

9.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

10.
Polyinosinic acid has been known to adopt the four-stranded helical structure but its basic unit, inosine tetrad (I tetrad), has not been determined at the atomic level. Here we report the crystal structure of an RNA quadruplex containing an I tetrad at 1.4 A resolution. The I tetrad has one cyclic hydrogen bond N1...O6 with the bond length of 2.7 A. A water bridge is observed in the minor groove side of the base tetrad. Even though it is sandwiched by guanine tetrads (G tetrads), the I tetrad is buckled towards the 3' side of the tetrad plane, which results from the different interaction strength with K ions on two sides of the tetrad plane. Comparison with both G tetrad and adenine tetrad indicates that lack of NH2 in the C2 position makes the I tetrad prone to buckle for interactions with ligands. Two U*(G-G-G-G) base pentads are observed at the junction of the 5' termini of two quadruplexes. The uridine residue in the base pentad is engaged in two hydrogen bonding interactions (N2(G)-H...O2(U) and O2'(G)-H...O4(U)) and a water-mediated interaction (N3(G) and N3(U)) with the G tetrad. We also discuss the roles of amino group in purine tetrads and the inter-quadruplex interactions in RNA molecules. These quadruplexes may interact with each other by stacking, groove binding and intercalation.  相似文献   

11.
The 5,6-di-O-tosylated derivative of l-ascorbic acid was synthesized by selective protection and deprotection of 2,3- and 5,6-dihydroxy functional groups involving 5,6-ditosylation in the final step, while the novel 6-acetoxy, 6-hydroxy, and 6-chloro derivatives of 4,5-didehydro-l-ascorbic acid were obtained by reaction of ditosylated compound with nucleophilic reagents. The analysis of 3JH-4-H-5 homonuclear coupling constants shows that all l-ascorbic acid derivatives except for epoxy and 4,5-didehydro compounds exist in high population as gauche conformers across C-4-C-5 bonds, while 3JC-3-H-5 heteronuclear coupling constants in 4,5-didehydro derivatives indicate cis geometry along C-4-C-5 double bond. The X-ray crystal structure analysis of 2,3-di-O-benzyl-5,6-epoxy- and 5,6-isopropylidene-l-ascorbic acid shows that the oxygen atoms attached at positions 2 and 3 of the lactone ring are disposed in a synperiplanar fashion. Besides that, the dioxolane ring adopts half-chair conformation. The molecules of epoxy derivative are joined into infinite chains by one weak hydrogen bond of C-H...O type. Two O-H...O, and C-H...O hydrogen bonds link the molecules of 5,6-di-O-isopropylidene compound into two-dimensional network. 6-Chloro derivative of 2,3-di-O-benzyl-l-ascorbic acid showed the best cytostatic effects against all tested malignant tumor cells (IC50: approximately 18 microM).  相似文献   

12.
N-Acylethanolamines elicited much interest in recent years owing to their occurrence in biological membranes under conditions of stress as well as under normal conditions. The molecular conformation, packing properties and intermolecular interactions of N-myristoylethanolamine (NMEA) have been determined by single crystal X-ray diffraction analysis. The lipid crystallized in the space group P21/a with unit cell dimensions: a=9.001, b=4.8761, c=39. 080. There are four symmetry-related molecules in the monoclinic unit cell. The molecules are organized in a tail-to-tail fashion, similar to the arrangement in a bilayer membrane. The hydrophobic acyl chain of the NMEA molecule is tilted with respect to the bilayer normal by an angle of 37 degrees. Each hydroxy group forms two hydrogen bonds, one as a donor and the other as an acceptor, with the hydroxy groups of molecules in the opposing leaflet. These O-H...O hydrogen bonds form an extended, zig-zag type network along the b-axis. In addition, the N-H and C=O groups of adjacent molecules are involved in N-H...O hydrogen bonds, which also connect adjacent molecules along the b-axis.  相似文献   

13.
All the peptide bonds in cyclic(Gly-L-Pro-D-Phe-Gly-L-Ala) are in the trans conformation; however, the peptide bond C'5-N1 is twisted by 19 degrees from planarity (omega 5 = -161 degrees). A Type II beta-turn encompasses the L-Pro-D-Phe residues. Carbonyl oxygens O2, O4 and O5 are directed to the same side of the average plane through the backbone ring and they form hydrogen bonds with N3, N5 and N1, respectively, in adjacent molecules in a stacked column where the adjacent molecules are related by one translational unit. The conformation of the backbone is different from that established in other molecules with the DLDDL chirality sequence. The P21 cell contains two molecules of C21H26N5O5 with a = 4.836(2) A, b = 18.346(8) A, c = 12.464(5) A and beta = 100.05(4) degrees. The R factor for 1382 data with [F0[ greater than 1 sigma is 7.0%.  相似文献   

14.
The crystal and molecular structures of the antiviral compound 1-(2-hydroxyethoxymethyl)-1,2,4-triazole-5-carboxamide has been determined by the X-ray diffraction method. The space group is P2i/c, unit cell parameters a = 4,381, b = 18,679, c = 10,776 A, beta = 107,40 degrees, Z = 4. The structure was solved by the direct method and refined by a full-matrix least-squares procedure to R = 4.9%. Two planar groups of atoms can be distinguished in the molecule. The first group involves the atoms of triazole ring, C6, and C1', the second one contains C5, C6, O6 and N6 atoms. The angle between these planes is 5.6 degrees. The carboxyamide group is rotated by 180 degrees in comparison with this group in ribavirin. That is why the intramolecular hydrogen bond C1'-H1'. 1...O6 can form. Torsion angle O5'-C5'-C4'-O4' is 73.9 degrees and it corresponds to gauche-rotamer. The conformation about O4'-C4' bond is trans. The C1'-C4' bond is approximately perpendicular to the aglycone.  相似文献   

15.
Panigrahi SK 《Amino acids》2008,34(4):617-633
Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.  相似文献   

16.
The pyrimidine antimetabolite Ftorafur [FT; 5-fluoro-1-(tetrahydro-2-furyl)uracil] has shown significant antitumor activity in several adenocarcinomas with a spectrum of activity similar to, but less toxic than, 5-fluorouracil (5-FU). It is considered as a prodrug that acts as a depot form of 5-FU, and hence the two drugs exhibit a similar spectrum of chemotherapeutic activity. Ftorafur is metabolized in animals and humans when hydroxyl groups are introduced into the tetrahydrofuran moiety. These metabolites are also thought to be as active as ftorafur but less toxic than 5-FU. Hydroxyl derivatives: 2'-hydroxyftorafur (III), 3'-hydroxyftorafur (IV) and 2',3'-dihydroxyftorafur (II) were synthesized and X-ray and NMR studies of these hydroxyl derivatives were undertaken in our laboratories to study the structural and conformational features of Ftorafur and its metabolites in the solid and solution states. X-ray crystallographic investigations were carried out with data collected on a CAD-4 diffractometer. The structures were solved and refined using the SDP crystallographic package of Enraf-Nonius on PDP 11/34 and Microvax computers. All of the compounds studied had the base in the anti conformation. The glycosidic torsion angles varied from -20 to 60 degrees. There is an inverse correlation between the glycosyl bond distances and the chi angle. Molecules with a lower chi angle have a larger bond distance and vice versa. The sugar rings show a wide variation of conformations ranging from C2'-endo through C3'-endo to C4'-exo. The crystal structures are stabilized by hydrogen bonds involving the base nitrogen atom N3 and the hydroxyl oxygen atoms of the sugar rings as donors and the keto oxygens O2 and O4 of the base and the hydroxyl oxygen atoms O2' and O3' as acceptors. The NMR studies were carried out on Brüker 400 and 600 MHz instruments. Simulated proton spectra were obtained through Laocoon, and pseudorotational parameters were solved by Pseurot. Presence of syn or anti forms was demonstrated with the use of NOE experiments. The glycosyl conformations in solution vary more widely than in the solid state. The conformations of the sugar molecules are in agreement with the values obtained in the solid state. The studies of the structure and conformation in the solid and solution states give a model for the Ftorafur molecule that could be used in structure, function and biological activity correlation studies.  相似文献   

17.
The enzyme ribonuclease T1 (RNase T1) isolated from Aspergillus oryzae was cocrystallized with the specific inhibitor guanylyl-2',5'-guanosine (2',5'-GpG) and the structure refined by the stereochemically restrained least-squares refinement method to a crystallographic R-factor of 14.9% for X-ray data above 3 sigma in the resolution range 6 to 1.8 A. The refined model consists of 781 protein atoms, 43 inhibitor atoms in a major site and 29 inhibitor atoms in a minor site, 107 water oxygen atoms, and a metal site assigned as Ca. At the end of the refinement, the orientation of His, Asn and Gln side-chains was reinterpreted on the basis of two-dimensional nuclear magnetic resonance data. The crystal packing and enzyme conformation of the RNase T1/2',5'-GpG complex and of the near-isomorphous RNase T1/2'-GMP complex are comparable. The root-mean-square deviation is 0.73 A between equivalent protein atoms. Differences in the unit cell dimensions are mainly due to the bound inhibitor. The 5'-terminal guanine of 2',5'-GpG binds to RNase T1 in much the same way as in the 2'-GMP complex. In contrast, the hydrogen bonds between the catalytic center and the phosphate group are different and the 3'-terminal guanine forms no hydrogen bonds with the enzyme. This poor binding is reflected in a 2-fold disorder of 2',5'-GpG (except the 5'-terminal guanine), which originates from differences in the pucker of the 5'-terminal ribose. The pucker is C2'-exo for the major site (2/3 occupancy) and C1'-endo for the minor site (1/3 occupancy). The orientation of the major site is stabilized through stacking interactions between the 3'-terminal guanine and His92, an amino acid necessary for catalysis. This might explain the high inhibition rate observed for 2',5'-GpG, which exceeds that of all other inhibitors of type 2',5'-GpN. On the basis of distance criteria, one solvent peak in the electron density was identified as metal ion, probably Ca2+. The ion is co-ordinated by the two Asp15 carboxylate oxygen atoms and by six water molecules. The co-ordination polyhedron displays approximate 4m2 symmetry.  相似文献   

18.
The crystal structure of a valinomycin analogue, cyclo[-(D-Val-Hyi-Val-D-Hyi)3-]x(C60H102N6O18) crystallized with dioxane and water molecules, has been solved by X-ray direct methods. The conformation found is analogous to one established for free meso-valinomycin crystallized from other organic solvents. It is characterized by a centrosymmetric bracelet form, stabilized by six intramolecular 4----1 type hydrogen bonds between amide N-H and C = O groups. One water molecule is fixed asymmetrically by hydrogen bonds in the internal negatively charged cavity of the complexon. The meso-valinomycin molecule "bracelets" in the crystal form stacks alternatively with dioxane molecules.  相似文献   

19.
In the crystal structures of N3-protonated cytidinium and 2'-deoxycytidinium salts with composite XYn anions capable of accepting hydrogen bonds through their Y atoms, the dominating motif of cytosinium...anion interactions consists of a pair of hydrogen bonds donated from the N3+ -H protonation site and from the exoamino N4-H41 group cis to N3, and accepted by two Y centers of one anion. This multipoint recognition pattern is stable and robust and thus can be classified as a supramolecular synthon. In a broader group of N3-protonated, N1-substituted cytosinium salts with composite anions it occurs with 70% frequency. The C5 side of the cytosine ring mimics the N3+ -H type synthon and shows a propensity to form an analogous motif in which a C5-H5...Y hydrogen bond replaces the strong N3+ -H...Y interaction. Since the C-H...Y bond is much weaker, the secondary motif shows higher deformability and is less frequent (44%).  相似文献   

20.
A H Wang  G Ughetto  G J Quigley  A Rich 《Biochemistry》1987,26(4):1152-1163
The crystal structure of a daunomycin-d(CGTACG) complex has been solved by X-ray diffraction analysis and refined to a final R factor of 0.175 at 1.2-A resolution. The crystals are in a tetragonal crystal system with space group P4(1)2(1)2 and cell dimensions of a = b = 27.86 A and c = 52.72 A. The self-complementary DNA forms a six base pair right-handed double helix with two daunomycin molecules intercalated in the d(CpG) sequences at either end of the helix. Daunomycin in the complex has a conformation different from that of daunomycin alone. The daunomycin aglycon chromophore is oriented at right angles to the long dimension of the DNA base pairs, and the cyclohexene ring A rests in the minor groove of the double helix. Substituents on this ring have hydrogen-bonding interactions to the base pairs above and below the intercalation site. O9 hydroxyl group of the daunomycin forms two hydrogen bonds with N3 and N2 of an adjacent guanine base. Two bridging water molecules between the drug and DNA stabilize the complex in the minor groove. In the major groove, a hydrated sodium ion is coordinated to N7 of the terminal guanine and the O4 and O5 of daunomycin with a distorted octahedral geometry. The amino sugar lies in the minor groove without bonding to the DNA. The DNA double helix is distorted with an asymmetrical rearrangement of the backbone conformation surrounding the intercalator drug. The sugar puckers are C1,C2'-endo, G2,C1'-endo, C11,C1'-endo, and G12,C3'-exo. Only the C1 residue has a normal anti-glycosyl torsion angle (chi = -154 degrees), while the other three residues are all in the high anti range (average chi = -86 degrees). This structure allows us to identify three principal functional components of anthracycline antibiotics: the intercalator (rings B-D), the anchoring functions associated with ring A, and the amino sugar. The structure-function relationships of daunomycin binding to DNA as well as other related anticancer drugs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号