首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The na?ve T-cell repertoire is vast, containing millions of unique T-cell receptor (TCR) structures. Faced with such diversity, the mobilization of TCR structures from this enormous pool was once thought to be a stochastic, even chaotic, process. However, steady and systematic dissection over the last 20 years has revealed that this is not the case. Instead, the TCR repertoire deployed against individual antigens is routinely ordered and biased. Often, identical and near-identical TCR repertoires can be observed across different individuals, suggesting that the system encompasses an element of predictability. This review provides a catalog of αβ TCR bias by disease and by species, and discusses the mechanisms that govern this inherent and widespread phenomenon.  相似文献   

2.
Structural determinants of T-cell receptor bias in immunity   总被引:1,自引:0,他引:1  
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.  相似文献   

3.
T cell populations are regulated both by signals specific to the T-cell receptor (TCR) and by signals and resources, such as cytokines and space, that act independently of TCR specificity. Although it has been demonstrated that disruption of either of these pathways has a profound effect on T-cell development, we do not yet have an understanding of the dynamical interactions of these pathways in their joint shaping of the T cell repertoire. Complete DiGeorge Anomaly is a developmental abnormality that results in the failure of the thymus to develop, absence of T cells, and profound immune deficiency. After receiving thymic tissue grafts, patients suffering from DiGeorge anomaly develop T cells derived from their own precursors but matured in the donor tissue. We followed three DiGeorge patients after thymus transplantation to utilize the remarkable opportunity these subjects provide to elucidate human T-cell developmental regulation. Our goal is the determination of the respective roles of TCR-specific vs. TCR-nonspecific regulatory signals in the growth of these emerging T-cell populations. During the course of the study, we measured peripheral blood T-cell concentrations, TCRβ V gene-segment usage and CDR3-length spectratypes over two years or more for each of the subjects. We find, through statistical analysis based on a novel stochastic population-dynamic T-cell model, that the carrying capacity corresponding to TCR-specific resources is approximately 1000-fold larger than that of TCR-nonspecific resources, implying that the size of the peripheral T-cell pool at steady state is determined almost entirely by TCR-nonspecific mechanisms. Nevertheless, the diversity of the TCR repertoire depends crucially on TCR-specific regulation. The estimated strength of this TCR-specific regulation is sufficient to ensure rapid establishment of TCR repertoire diversity in the early phase of T cell population growth, and to maintain TCR repertoire diversity in the face of substantial clonal expansion-induced perturbation from the steady state.  相似文献   

4.
A highly diverse T-cell receptor (TCR) repertoire is a fundamental property of an effective immune system, and is associated with efficient control of viral infections and other pathogens. However, direct measurement of total TCR diversity is impossible. The diversity is high and the frequency distribution of individual TCRs is heavily skewed; the diversity therefore cannot be captured in a blood sample. Consequently, estimators of the total number of TCR clonotypes that are present in the individual, in addition to those observed, are essential. This is analogous to the ‘unseen species problem’ in ecology. We review the diversity (species richness) estimators that have been applied to T-cell repertoires and the methods used to validate these estimators. We show that existing approaches have significant shortcomings, and frequently underestimate true TCR diversity. We highlight our recently developed estimator, DivE, which can accurately estimate diversity across a range of immunological and biological systems.  相似文献   

5.
The characterization of the human T-cell receptor (TCR) repertoire has made remarkable progress, with most of the work focusing on the TCRβ chains. Here, we analyzed the diversity and complexity of both the TCRα and TCRβ repertoires of three healthy donors. We found that the diversity of the TCRα repertoire is higher than that of the TCRβ repertoire, whereas the usages of the V and J genes tended to be preferential with similar TRAV and TRAJ patterns in all three donors. The V-J pairings, like the V and J gene usages, were slightly preferential. We also found that the TRDV1 gene rearranges with the majority of TRAJ genes, suggesting that TRDV1 is a shared TRAV/DV gene (TRAV42/DV1). Moreover, we uncovered the presence of tandem TRBD (TRB D gene) usage in ~2% of the productive human TCRβ CDR3 sequences.  相似文献   

6.
7.
The consequences of severely limiting the T-cell receptor (TCR) repertoire available for the response to intranasal infection with an influenza A virus or with Sendai virus have been analyzed by using H-2k mice (TG8.1) transgenic for a TCR beta-chain gene (V beta 8.1D beta 2J beta 2.3C beta 2). Analyzing the prevalence of V beta 8.1+ CD8+ T cells in lymph node cultures from nontransgenic (non-TG) H-2k controls primed with either virus and then stimulated in vitro with the homologous virus or with anti-CD3 epsilon showed that this TCR is not normally selected from the CD8+ T-cell repertoire during these infections. However, the TG8.1 mice cleared both viruses and generated virus-specific effector cytotoxic T lymphocytes (CTL) and memory CTL precursors, though the responses were delayed compared with the non-TG controls. Depletion of the CD4+ T-cell subset had little effect on the course of influenza virus infection but substantially slowed the development of the Sendai virus-specific CTL response and virus elimination in both the TG8.1 and non-TG mice, indicating that CD4+ helpers are promoting the CD8+ T-cell response in the Sendai virus model. Even so, restricting the available T-cell repertoire to lymphocytes expressing a single TCR beta chain still allows sufficient TCR diversity for CD8+ T cells (acting in the presence or absence of the CD4+ subset) to limit infection with an influenza A virus and a parainfluenza type 1 virus.  相似文献   

8.
The relative contributions of HLA alleles and T-cell receptors (TCRs) to the prevention of mutational viral escape are unclear. Here, we examined human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T-cell responses restricted by two closely related HLA class I alleles, B*5701 and B*5703, that differ by two amino acids but are both associated with a dominant response to the same HIV-1 Gag epitope KF11 (KAFSPEVIPMF). When this epitope is presented by HLA-B*5701, it induces a TCR repertoire that is highly conserved among individuals, cross-recognizes viral epitope variants, and is rarely associated with mutational escape. In contrast, KF11 presented by HLA-B*5703 induces an entirely different, more heterogeneous TCR beta-chain repertoire that fails to recognize specific KF11 escape variants which frequently arise in clade C-infected HLA-B*5703(+) individuals. These data show the influence of HLA allele subtypes on TCR selection and indicate that extensive TCR diversity is not a prerequisite to prevention of allowable viral mutations.  相似文献   

9.
Using a panel of human T-cell receptor (TCR) variable region β chain (Vβ) polymerase chain reaction (PCR) primers, we performed cross-sectional and longitudinal analyses of the TCR Vβ repertoire in naive and HIV-1 infected chimpanzees. We demonstrate that our TCR PCR primer panel will support amplification of chimpanzee cDNA from most of the TCR Vβ families. However, no differences in TCR Vβ expression were found between the naive and HIV-1 infected chimpanzees, unlike the TCR Vβ repertoire perturbation found in HIV-1 infected human subjects. This finding suggests that a complete TCR repertoire in HIV-1 infected chimpanzees is associated with the maintenance CD4 + T-cell numbers and lack of progression to AIDS.  相似文献   

10.
A Vβ TCR repertoire is analyzed for understanding the T-cell population in the immune response. However, the TCR repertoire of the Vα-Vβ pair is difficult to analyze because no suitable analytical method is available. Here, we have applied the single-cell 5′-RACE method for amplifying TCR cDNAs from single T-cells and analyzed the repertoire of Vα-Vβ pairs in human T-cells that responded to a superantigen, SEB. We found that the TCR Vβ profile of the SEB-stimulated CD4+ T-cells was in accordance with the previous reports, that the TCR Vα profile also exhibited a prominent difference, and that the TCR Vα-Vβ pairs of the SEB-responding T-cells were promiscuous. We have also found a significant dual TCRα expression in single T-cells. This is the first report of a comprehensive analysis of the functional repertoire of Vα-Vβ pairs at the single T-cell level. This novel method may contribute to TCR-based immunotherapeutics.  相似文献   

11.
There is increasing evidence that T‐cell receptor (TCR) repertoire diversity can be a predictive biomarker of immune responses in cancer patients. However, the characteristics of the T‐cell repertoire together with its prognostic significance in melanoma patients and impact on disease progression remain unknown. We investigated the combinatorial TCR repertoire diversity by semi‐quantitative multi‐N‐plex PCR in peripheral blood samples from 44 melanoma patients together with seven matched metastatic lymph nodes and explored its potential predictive value on clinical prognosis. The diversity was quantified by calculating both richness (number of different specificities) and evenness (relative abundance of the different specificities). Our results revealed that a higher TCR repertoire diversity in blood of patients was associated with a longer PFS, while divpenia (low repertoire diversity) was linked with poor prognosis. The diversity was significantly higher in patients undergoing late relapse and long survival compared to patients who progressed rapidly. Interestingly, the TCR repertoire diversity in tumor may have a potential prognostic value. Thus, our study highlights that the TCR repertoire diversity is a prognostic indicator of clinical outcome in patients with melanoma.  相似文献   

12.
Pancreatic cancer (PC) has been the fourth cancer-related death worldwide, diagnosed at an unresectable stage due to its rapid progression and few symptoms of this disease at early stages. The aim of this study was to determine the association between the diversity of T-cell receptor (TCR) repertoire and clinicopathological characteristics of patients with PC and other benign pancreatic diseases. In order to make a comprehensive analysis the TCR repertoire, high-throughput sequencing was used to differentiate complementarity determining region 3 (CDR3) of the TCR β chain in peripheral blood samples from 3 PC, 3 chronic pancreatitis, 3 pancreatic cystic lesions and 3 pancreatic neuroendocrine tumour patients. We found that there were significant differences related to TCR repertoire between PC and other pancreatic diseases, and PC is a relatively immunosuppressive tumour. Changes of peripheral TCR repertoire may be used to predict the progression of PC and the response to immunotherapy. And there may exist novel-specific antigens in PC patients which could be used to design targeting immunotherapy in the nearly future.  相似文献   

13.
14.
Tumors from colorectal cancer (CRC) are generally immunogenic and commonly infiltrated with T lymphocytes. However, the details of the adaptive immune reaction to these tumors are poorly understood. We have accrued both colon tumor samples and adjacent healthy mucosal samples from 15 CRC patients to study lymphocytes infiltrating these tissues. We apply a method for detailed sequencing of T-cell receptor (TCR) sequences from tumor-infiltrating lymphocytes (TILs) in CRC tumors at high throughput to probe T-cell clones in comparison with the TCRs from adjacent healthy mucosal tissue. In parallel, we captured TIL counts using standard immunohistochemistry. The variation in diversity of the TIL repertoire was far wider than the variation of T-cell clones in the healthy mucosa, and the oligoclonality was higher on average in the tumors. However, the diversity of the T-cell repertoire in both CRC tumors and healthy mucosa was on average 100-fold lower than in peripheral blood. Using the TCR sequences to identify and track clones between mucosal and tumor samples, we determined that the immune response in the tumor is different than in the adjacent mucosal tissue, and the number of shared clones is not dependent on distance between the samples. Together, these data imply that CRC tumors induce a specific adaptive immune response, but that this response differs widely in strength and breadth between patients.  相似文献   

15.
The recent development of High Throughput Sequencing technologies has enabled an individual’s TCR repertoire to be efficiently analysed at the nucleotide level. However, with unique clonotypes ranging in the tens of millions per individual, this approach gives a surfeit of information that is difficult to analyse and interpret in a biological context and gives little information about TCR structural diversity. Using publicly available TCR CDR3 sequence data, we analysed TCR repertoires by converting the encoded CDR3 amino acid sequences into Kidera Factors, a set of orthogonal physico-chemical properties that reflect protein structure. This approach enabled the TCR repertoire from different individuals to be distinguished and demonstrated the close similarity of the repertoire in different samples from the same individual.  相似文献   

16.
To analyze the potential role of Tregs in controlling the TCR repertoire breadth to a non‐self‐antigen, a TCRβ transgenic mouse model (EF4.1) expressing a limited, yet polyclonal naïve T‐cell repertoire was used. The response of EF4.1 mice to an I‐Ab‐associated epitope of the F‐MuLV envelope protein is dominated by clones expressing a Vα2 gene segment, thus allowing a comprehensive analysis of the TCRα repertoire in a relatively large cohort of mice. Control and Treg‐depleted EF4.1 mice were immunized, and the extent of the Vα2‐bearing, antigen‐specific TCR repertoire was characterized by high‐throughput sequencing and spectratyping analysis. In addition to increased clonal expansion and acquisition of effector functions, Treg depletion led to the expression of a more diverse TCR repertoire comprising several private clonotypes rarely observed in control mice or in the pre‐immune repertoire. Injection of anti‐CD86 antibodies in vivo led to a strong reduction in TCR diversity, suggesting that Tregs may influence TCR repertoire diversity by modulating costimulatory molecule availability. Collectively, these studies illustrate an additional mechanism whereby Tregs control the immune response to non‐self‐antigens.  相似文献   

17.
The highly diverse heterodimeric surface T cell receptor (TCR) gives the T lymphocyte its specificity for MHC-bound peptides needed to initiate antigen-recognition. In normal peripheral blood, spleen and lymph nodes, the TCR repertoire of the T lymphocytes is usually polyclonal. However, in malignancies such as leukemias, as well as in lymphoproliferative diseases of mature T cells, the TCR is a reflection of the clonality of the malignant cells and is therefore monoclonal. Several clinical conditions (mainly solid tumors and autoimmune diseases) have been described where the TCR repertoire is restricted. The ability to demonstrate clonal TCR usage provides a useful tool to dissect the immunopathology of inflammatory diseases. In this review we discuss these findings and propose to sub-divide diseases with restricted TCR repertoire into a group of conditions in which there is a known TCR ligand, as opposed to diseases in which the restricted TCR repertoire is the result of impaired T-cell development. This classification sheds light on the pathogenesis of several inflammatory diseases.  相似文献   

18.

Background

End stage renal disease (ESRD) is associated with defective T-cell mediated immunity. A diverse T-cell receptor (TCR) Vβ repertoire is central to effective T-cell mediated immune responses to foreign antigens. In this study, the effect of ESRD on TCR Vβ repertoire was assessed.

Results

A higher proportion of ESRD patients (68.9 %) had a skewed TCR Vβ repertoire compared to age and cytomegalovirus (CMV) – IgG serostatus matched healthy individuals (31.4 %, P?<?0.001). Age, CMV serostatus and ESRD were independently associated with an increase in shifting of the TCR Vβ repertoire. More differentiated CD8+ T cells were observed in young ESRD patients with a shifted TCR Vβ repertoire. CD31-expressing naive T cells and relative telomere length of T cells were not significantly related to TCR Vβ skewing.

Conclusions

ESRD significantly skewed the TCR Vβ repertoire particularly in the elderly population, which may contribute to the uremia-associated defect in T-cell mediated immunity.
  相似文献   

19.
Thymocyte selection aims to shape a T-cell repertoire that, on the one hand, is able to recognize and respond to foreign peptides and, on the other hand, tolerizes the presence of self-peptides in the periphery. Deletion of T cells or their precursors that fail to fulfill these criteria is mainly mediated by the Bcl-2-regulated apoptosis pathway. Absence of T-cell receptor (TCR)-mediated signals or hyperactivation of the TCR by high-affinity self-peptide-major histocompatibility complexes can both trigger apoptotic cell death in developing thymocytes. Notably, TCR-signaling strength also defines survival and outgrowth of the fittest antigen-specific T-cell clones in the periphery. TCR threshold activity leading to such drastically opposing signaling outcomes (life or death) is modulated in part by cytokines and other factors, such as glucocorticoids, that fine-tune the Bcl-2 rheostat, thereby impacting on cell survival. This review aims to highlight the role of Bcl-2-regulated cell death for clonal T-cell selection.  相似文献   

20.
Recent studies have suggested that the diversity of TCR repertoire after primary immunization is conserved in memory T cells and that a progressive narrowing of this repertoire may take place during recall infections. It now remains to be investigated which parameters determine the repertoire of the memory response and possibly restrict its diversity after subsequent antigenic challenges. To address this question, we took advantage of a panel of CD8+ T cell clones from the joint of a rheumatoid arthritis patient and selected for their reactivity against a single MHC/peptide complex. Characterization of both TCR chains documented a great diversity among those clones and the persistence of clonotypes over a 2-yr period. Strikingly, despite the observed repertoire heterogeneity, all clones displayed a narrow range of MHC/peptide density requirements in cytotoxicity assays (ED50 between 9 and 36 nM). TCR affinities were then indirectly estimated by blocking CD8 interaction with an anti-CD8 mAb. We found a wide range of TCR affinities among the different clonotypes that segregated with Vbeta usage. We thus propose that during an in vivo chronic response, a narrow range of avidity of the TCR-CD8 complex conditions long-term clonotype persistence, and that the level of CD8 contribution is adjusted to keep clonotypes with variable TCR affinities within this avidity window.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号