首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vitamin D and prostate cancer.   总被引:4,自引:0,他引:4  
Classically, the actions of vitamin D have been associated with bone and mineral metabolism. More recent studies have shown that vitamin D metabolites induce differentiation and/or inhibit cell proliferation of a number of malignant and nonmalignant cell types including prostate cancer cells. Epidemiological studies show correlations between the risk factors for prostate cancer and conditions that can result in decreased vitamin D levels. The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (calcitriol), inhibits growth of both primary cultures of human prostate cancer cells and cancer cell lines, but the mechanism by which the cells are growth-inhibited has not been clearly defined. Initial studies suggest that calcitriol alters cell cycle progression and may also initiate apoptosis. One of the disadvantages of using vitamin D in vivo is side-effects such as hypercalcemia at doses above physiological levels. Analogs of calcitriol have been developed that have comparable or more potent antiproliferative effects but are less calcemic. Further research into the mechanisms of vitamin D action in prostate and identification of suitable analogs for use in vivo may lead to its use in the treatment or prevention of prostate cancer.  相似文献   

2.
The physiologically active form of vitamin D, 1,25-dihydroxyvitamin D(3), plays an important role not only in the establishment and maintenance of calcium metabolism, but also in regulating cell growth and differentiation. Because the clinical usefulness of 1,25-dihydroxyvitamin D(3) is limited by its tendency to cause hypercalcemia, new analogs with a better therapeutic profile have been synthesized, including ZK 156718. We compared the effects of 1,25-dihydroxyvitamin D(3) and ZK 156718 on growth, differentiation, and on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Whereas ZK 156718 at the concentration [10(-8) M] was as potent as 10(-6) M 1,25-dihydroxyvitamin D(3) in inducing differentiation and p21(Waf1/Cip1) expression, it was even more effective in inhibiting cell growth and stimulating p27(Kip1) expression than 1,25-dihydroxyvitamin D(3) itself. In summary, our study presents a new and potent vitamin D analog with a decreased metabolic stability, making it useful for the treatment of a diversity of clinical disorders.  相似文献   

3.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D3,] possess in vitro multiple anti-cancer activities including growth arrest, induction of apoptosis and differentiation of a variety of different types of malignant cells. However, its use as a therapeutic agent is hindered by its calcemic effects. Analogs of 1,25(OH)(2)D3 have enhanced anti-tumor activity, with reduced calcemic effects. However, limited clinical studies using vitamin D compounds have not yet achieved major clinical success. Nevertheless, pre-clinical studies suggest that the combination of either 1,25(OH)(2)D3 or its analogs with other agents can have additive or synergistic anti-cancer activities, suggesting future clinical studies.  相似文献   

4.
5.
The active form of vitamin D(3), 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], modulates proliferation and induces differentiation of many cancer cells. A new class of analogs of vitamin D(3) has been synthesized, having two side-chains attached to carbon-20 (Gemini) and deuterium substituted on one side-chain. We have examined six of these analogs for their ability to inhibit growth of myeloid leukemia (HL-60), prostate (LNCaP, PC-3, DU145), lung (H520), colon (HT-29), and breast (MCF-7) cancer cell lines. Dose-response clonogenic studies showed that all six analogs had greater antiproliferative activities against cancer cells than 1,25(OH)(2)D(3). Although they had similar potency, the most active of these analogs was BXL-01-0120. BXL-01-0120 was 529-fold more potent than 1,25(OH)(2)D(3) in causing 50% clonal growth inhibition (ED(50)) of HL-60 cells. Pulse-exposure studies demonstrated that exposure to BXL-01-120 (10(-9)M, 48h) resulted in 85% clonal inhibition of HL-60 growth. BXL-01-0120 (10(-11)M, 4 days) induced the differentiation marker, CD11b. Also, morphologically differentiation was more prominent compared to 1,25(OH)(2)D(3). Annexin V assay showed that BXL-01-0120 (10(-10)M, 4 days) induced significantly (p<0.05) more apoptosis than 1,25(OH)(2)D(3). In summary, these analogs have a unique structure resulting in extremely potent inhibition of clonal proliferation of various types of cancer cells, especially HL-60 cells.  相似文献   

6.
Vitamin D, a steroid hormone and exerts its biological effects through its active metabolite 1alpha, 25 dihydroxyvitamin D3 [1,25(OH)2D3]. Like steroid hormones, 1,25(OH)2D3 is efficacious at very low concentrations and serves as a ligand for vitamin D receptors (VDR), associating with VDR very high affinity. Despite its potent property as a differentiating agent, its use in the clinical practice is hampered by the induction of hypercalcemia at a concentration required to suppress cancer cell proliferation. Therefore nearly 400 structural analogs of vitamin D3 have been synthesized and evaluated for their efficacy and toxicity. Among these analogs, relatively less toxic but highly efficacious analogs, EB1089, RO24-5531, 1alpha-hydroxyvitamin D5 and a few others have been evaluated in a preclinical toxicity and in Phase I clinical trials for dose tolerance in advanced cancer patients. Clinical trials using vitamin D analogs for prevention or therapy of cancer patients are still in their infancy. Vitamin D mediates its action by two independent pathways. Genomic pathway involves nuclear VDR and induces biological effects by interactions with hormone response elements and modulation of differential gene expressions. Evidence also suggests that vitamin D analogs also interact with steroid hormone(s) inducible genes. The non-genomic pathway is characterized by rapid actions of vitamin D. It involves interactions with membrane-VDR interactions and its interactions with protein kinase C and by altering intracellular calcium channels. Thus, the development of nontoxic analogs of vitamin D analogs and understanding of their molecular mechanism(s) of action are of significant importance in the prevention and treatment of cancer by vitamin D.  相似文献   

7.
Prostate cancer (PCa) cells express vitamin D receptors (VDR) and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits the growth of epithelial cells derived from normal, benign prostate hyperplasia, and PCa as well as established PCa cell lines. The growth inhibitory effects of 1,25(OH)(2)D(3) in cell cultures are modulated tissue by the presence and activities of the enzymes 25-hydroxyvitamin D(3) 24-hydroxylase which initiates the inactivation of 1,25(OH)(2)D(3) and 25-hydroxyvitamin D(3) 1alpha-hydroxylase which catalyses its synthesis. In LNCaP human PCa cells 1,25(OH)(2)D(3) exerts antiproliferative activity predominantly by cell cycle arrest through the induction of IGF binding protein-3 (IGFBP-3) expression which in turn increases the levels of the cell cycle inhibitor p21 leading to growth arrest. cDNA microarray analyses of primary prostatic epithelial and PCa cells reveal that 1,25(OH)(2)D(3) regulates many target genes expanding the possible mechanisms of its anticancer activity and raising new potential therapeutic targets. Some of these target genes are involved in growth regulation, protection from oxidative stress, and cell-cell and cell-matrix interactions. A small clinical trial has shown that 1,25(OH)(2)D(3) can slow the rate of prostate specific antigen (PSA) rise in PCa patients demonstrating proof of concept that 1,25(OH)(2)D(3) exhibits therapeutic activity in men with PCa. Further investigation of the role of calcitriol and its analogs for the therapy or chemoprevention of PCa is currently being pursued.  相似文献   

8.
The vitamin D endocrine system plays a central role in mineral ion homeostasis through the actions of the vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], on the intestine, bone, parathyroid gland, and kidney. The main function of 1,25(OH)(2)D(3) is to promote the dietary absorption of calcium and phosphate, but effects on bone, kidney and the parathyroids fine-tune the mineral levels. In addition to these classical actions, 1,25(OH)(2)D(3) exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)(2)D(3) have suggested a multitude of potential therapeutic applications of the vitamin D hormone for the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). Unfortunately, the effective therapeutic doses required to treat these disorders can produce substantial hypercalcemia. This limitation of 1,25(OH)(2)D(3) therapy has spurred the development of vitamin D analogs that retain the therapeutically important properties of 1,25(OH)(2)D(3), but with reduced calcemic activity. Analogs with improved therapeutic indices are now available for treatment of psoriasis and secondary hyperparathyroidism in chronic kidney disease, and research on newer analogs for these indications continues. Other analogs are under development and in clinical trials for treatment of various types of cancer, autoimmune disorders, and many other diseases. Although many new analogs show tremendous promise in cell-based models, this article will limit it focus on the development of analogs currently in use and those that have demonstrated efficacy in animal models or in clinical trials.  相似文献   

9.
10.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is an endocrine hormone whose classic role is the maintenance of calcium homeostasis. It is well documented that 1,25(OH)(2)D(3) also has anti-tumor effects on a number of cancers and cancer cell lines including breast, colorectal, gastric, liver, ovarian, prostate, and non-melanoma skin cancers. Included in the anti-tumor activities of 1,25(OH)(2)D(3) are its ability to cause antiproliferation, prodifferentation and decrease angiogenesis. Furthermore, through regulation of the plaminogen activator (PA) system and a class of proteolytic enzymes called matrix metalloproteinases (MMPs), 1,25(OH)(2)D(3) reduces the invasive spread of tumor cells. Because of the calcemic limitations of using 1,25(OH)(2)D(3) as a therapy, we have tested the effects of a novel Gemini vitamin D analogue, Deuterated Gemini (DG), on mouse colorectal cancer. We demonstrated that DG is more potent in reducing tumor volume and mass, compared to control and 1,25(OH)(2)D(3). DG significantly prevented (100% reduction, p<0.05) the invasive spread of colorectal tumor cells into the surrounding muscle, and had no effect on serum calcium levels. Thus, DG acts as a selective vitamin D receptor modulator (SVDRM) by enhancing select anti-tumor characteristic 1,25(OH)(2)D(3) activities, without inducing hypercalcemia. Thus, DG shows promise in the development of colorectal cancer therapies.  相似文献   

11.
1alpha,25-dihydroxyvitamin D(3) (1,25D(3)) inhibits growth and induces apoptosis in breast cancer cells in vivo and in vitro. To examine the role of the Vitamin D receptor (VDR) in mediating the actions of 1,25D(3) at nanomolar and micromolar concentrations, mammary epithelial tumor cell lines generated in wild type (WT) and VDR knockout (VDRKO) mice were utilized. WT cells express VDR and are growth inhibited by 1,25D(3) and synthetic analogs EB1089 and CB1093 at 1nM concentrations, while VDRKO cells do not express VDR and are insensitive to Vitamin D compounds at concentrations up to 100nM. In the current studies, we have confirmed and extended these previous observations. At nanomolar concentrations of 1,25D(3) and all analogs tested, including EB1089, CB1093, MC1288, and KH1230, WT cells are growth inhibited and exhibit apoptotic morphology, while VDRKO cells show no growth inhibition or apoptosis. At concentrations of 1-10microM, however, 1,25D(3) and synthetic analogs induce growth inhibition and apoptotic morphology in both WT and VDRKO cell lines. These data indicate that nanomolar concentrations of 1,25D(3) and analogs mediate growth regulatory effects via mechanisms requiring the nuclear VDR, but that micromolar concentrations of Vitamin D compounds can exert non VDR-mediated effects.  相似文献   

12.
We characterized a structure-function relationships of four analogs of vitamin D(2) with extended and branched side-chains. We tested their ability to induce differentiation of human acute myeloid leukemia (AML) cells both in vitro and ex vivo. Our experiments on five human cell lines revealed substantial differences among tested analogs. Analogs with side-chains extended by one (PRI-1906) or two carbon units (PRI-1907) displayed similar or elevated cell-differentiating activity in comparison to 1,25-dihydroxyvitamin D(3) (1,25D), whereas further extending side-chain resulted in substantially lower biological activity (PRI-1908 and PRI-1909). Similar pattern of cell-differentiating activities to that observed in human cell lines has also been shown in blast cells isolated from patients diagnosed with AML. The ability of the analogs to activate expression of CYP24A1 gene has been studied in HL60 cell line. The analog PRI-1906 activated expression of CYP24A1 similarly to 1,25D, while PRI-1907 weaker than 1,25D. In addition, the analogs PRI-1906 and PRI-1907 were able to moderately inhibit proliferation and significantly activate expression of CYP24A1 mRNA in prostate cancer cells PC-3. Finally, we examined the molecular actions triggered by these analogs and found that their biological activity was related to their ability to induce expression and nuclear translocation of VDR and C/EBPβ.  相似文献   

13.
14.
BACKGROUND: Calcitriol [1,25-(OH)(2)D(3)] is a strong anti-proliferative agent both in vitro and in vivo. Earlier studies have established that calcitriol inhibits the growth factor-stimulated proliferation of endothelial cells (EC) and angiogenesis. However, the lethal calcemic side effects of calcitriol prohibit its use as a therapeutic agent. Several analogs of vitamin D have been developed to minimize these calcemic side effects. 1,25-dihydroxy-3-epi-vitamin D(3) (3-epiD(3)), a naturally formed vitamin D metabolite is one such analog. OBJECTIVE: To demonstrate that 3-epiD(3), a calcitriol analog, inhibits endothelial cell proliferation and induces apoptosis. RESULTS: Treatment of EC with 3-epiD(3) showed 60% inhibition (P < 0.006) of proliferation. Cell viability assays corroborated these results. Pro-apoptotic caspase-3 activity was increased fourfold (P < 0.01) in 3-epiD(3)-treated cells over controls. 3-epiD(3) induced apoptosis in EC as shown by genomic DNA fragmentation. Cell cycle analysis of 3-epiD(3)-treated EC revealed a G0/G1 arrest. CONCLUSIONS: 3-epiD(3), a low-calcemic, natural analog of calcitriol, inhibits EC proliferation by causing a G0/G1 arrest and induces apoptosis more effectively than 1,25-(OH)(2)D(3). These results suggest that 3-epiD(3) is a potent inhibitor of EC growth.  相似文献   

15.
Vitamin D is a principal regulator of calcium homeostasis. However, recent evidence has indicated that vitamin D can have numerous other physiological functions including inhibition of proliferation of a number of malignant cells including breast and prostate cancer cells and protection against certain immune mediated disorders including multiple sclerosis (MS). The geographic incidence of MS indicates an increase in MS with a decrease in sunlight exposure. Since vitamin D is produced in the skin by solar or UV irradiation and high serum levels of 25-hydroxyvitamin D (25(OH)D) have been reported to correlate with a reduced risk of MS, a protective role of vitamin D is suggested. Mechanisms whereby the active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) may act to mediate this protective effect are reviewed. Due to its immunosuppressive actions, it has been suggested that 1,25(OH)(2)D(3) may prevent the induction of MS.  相似文献   

16.
Vitamin D, the sunshine vitamin, has been recognized for almost 100 years as being essential for bone health. Vitamin D provides an adequate amount of calcium and phosphorus for the normal development and mineralization of a healthy skeleton. Vitamin D made in the skin or ingested in the diet, however, is biologically inactive and requires obligate hydroxylations first in the liver to 25-hydroxyvitamin D, and then in the kidney to 1,25-dihydroxyvitamin D. 25-Hydroxyvitamin D is the major circulating form of vitamin D that is the best indicator of vitamin D status. 1,25-dihydroxyvitamin D is the biologically active form of vitamin D. This lipid-soluble hormone interacts with its specific nuclear receptor in the intestine and bone to regulate calcium metabolism. It is now recognized that the vitamin D receptor is also present in most tissues and cells in the body. 1,25-dihydroxyvitamin D, by interacting with its receptor in non-calcemic tissues, is able to elicit a wide variety of biologic responses. 1,25-dihydroxyvitamin D regulates cellular growth and influences the modulation of the immune system. There is compelling epidemiologic observations that suggest that living at higher latitudes is associated with increased risk of many common deadly cancers. Both prospective and retrospective studies help support the concept that it is vitamin D deficiency that is the driving force for increased risk of common cancers in people living at higher latitudes. Most tissues and cells not only have a vitamin D receptor, but also have the ability to make 1,25-dihydroxyvitamin D. It has been suggested that increasing vitamin D intake or sun exposure increases circulating concentrations of 25-hydroxyvitamin D, which in turn, is metabolized to 1,25-dihydroxyvitamin D(3) in prostate, colon, breast, etc. The local cellular production of 1,25-dihydroxyvitamin D acts in an autocrine fashion to regulate cell growth and decrease the risk of the cells becoming malignant. Therefore, measurement of 25-hydroxyvitamin D is important not only to monitor vitamin D status for bone health, but also for cancer prevention.  相似文献   

17.
18.
19.
Mechanisms for the selective action of Vitamin D analogs   总被引:1,自引:0,他引:1  
The non-classical effects of 1,25(OH)(2)D(3) create possible therapeutic applications for immune modulation (e.g. auto-immune diseases and graft rejection), inhibition of cell proliferation (e.g. psoriasis, cancer) and induction of cell differentiation (e.g. cancer). The major drawback related to the use of 1,25(OH)(2)D(3) is its calcemic effect, which prevents the application of pharmacological concentrations. Several analogs are now available that show modest to good selectivity with regard to specific effects (e.g. anticancer or immune effects or bone anabolism versus hypercalcemia) when tested in appropriate in vivo models. The molecular basis for this selectivity is only partially understood and probably a variable mixture of mechanisms.  相似文献   

20.
Effective chemotherapy for pancreatic cancer is urgently needed. The aim of this study was to compare the anti-proliferative activity on pancreatic cancer cell lines of the vitamin D(3) analog, 22-oxa-1,25-dihydroxyvitamin D(3), maxacalcitol, with that of 1,25-dihydroxyvitamin D(3), calcitriol, with analysis of vitamin D receptor status and the G(1)-phase cell cycle-regulating factors. Antiproliferative effects of both agents were compared using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and by measuring the tumor size of xenografts inoculated into athymic mice. Scatchard analysis of vitamin D receptor contents, and mutational analysis of receptor complementary DNA were performed. Levels of expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, p21 and p27, were analysed by western blotting. In vitro, maxacalcitol and calcitriol markedly inhibited the proliferation and caused a G(1) phase cell cycle arrest with the appearance of numerous domes. In vivo, maxacalcitol inhibited the growth of BxPC-3 xenografts more significantly than calcitriol, without inducing hypercalcemia. Responsive cells had abundant functional vitamin D receptors. However, Hs 766T, showing no response to either agent, had the second highest receptor contents with no abnormalities in its primary structure deduced by receptor complementary DNA. In the responsive cells, p21 and p27 were markedly up-regulated after 24h of treatment with both agents. In non-responsive cells, no such changes were observed. In conclusion, maxacalcitol and calcitriol up-regulate p21 and p27 as an early event, which in turn could block the G(1)/S transition and induce growth inhibition in responsive cells, and maxacalcitol may provide a more useful tool for the chemotherapy of pancreatic cancer than calcitriol because of its low toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号