共查询到20条相似文献,搜索用时 0 毫秒
1.
Moretto M Durell B Schwartzman JD Khan IA 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(12):7389-7397
Gamma(delta) T cells have been reported to play an essential effector role during the early immune response against a wide variety of infectious agents. Recent studies have suggested that the gamma(delta) T cell subtype may also be important for the induction of adaptive immune response against certain microbial pathogens. In the present study, an early increase of gamma(delta) T cells during murine infection with Encephalitozoon cuniculi, an intracellular parasite, was observed. The role of gamma(delta) T cells against E. cuniculi infection was further evaluated by using gene-knockout mice. Mice lacking gamma(delta) T cells were susceptible to E. cuniculi infection at high challenge doses. The reduced resistance of delta(-/-) mice was attributed to a down-regulated CD8+ immune response. Compared with parental wild-type animals, suboptimal Ag-specific CD8+ T cell immunity against E. cuniculi infection was noted in delta(-/-) mice. The splenocytes from infected knockout mice exhibited a lower frequency of Ag-specific CD8+ T cells. Moreover, adoptive transfer of immune TCR(alpha)beta+ CD8+ cells from the delta(-/-) mice failed to protect naive CD8(-/-) mice against a lethal E. cuniculi challenge. Our studies suggest that gamma(delta) T cells, due to their ability to produce cytokines, are important for the optimal priming of CD8+ T cell immunity against E. cuniculi infection. This is the first evidence of a parasitic infection in which down-regulation of CD8+ T cell immune response in the absence of gamma(delta) T cells has been demonstrated. 相似文献
2.
Grayson JM Murali-Krishna K Altman JD Ahmed R 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(2):795-799
Following infection with intracellular pathogens, Ag-specific CD8(+) T cells become activated and begin to proliferate. As these cells become activated, they elaborate effector functions including cytokine production and cytolysis. After the infection has been cleared, the immune system returns to homeostasis through apoptosis of the majority of the Ag-specific effector cells. The surviving memory cells can persist for extended periods and provide protection against reinfection. Little is known about the changes in gene expression as Ag-specific cells progress through these stages of development, i.e., naive to effector to memory. Using recombinant MHC class I tetramers, we isolated Ag-specific CD8(+) T cells from mice infected with lymphocytic choriomeningitis virus at various time points and performed semiquantitative RT-PCR. We examined expression of: 1) genes involved in cell cycle control, 2) effector and regulatory functions, and 3) susceptibility to apoptosis. We found that Ag-specific CD8(+) memory T cells contain high steady-state levels of Bcl-2, BAX:, IFN-gamma, and lung Kruppel-like factor (LKLF), and decreased levels of p21 and p27 mRNA. Moreover, the pattern of gene expression between naive and memory cells is distinct and suggests that these two cell types control susceptibility to apoptosis through different mechanisms. 相似文献
3.
We earlier established a model of a persistent viral CNS infection using two week old immunologically normal (genetically unmodified) mice and recombinant measles virus (MV). Using this model infection we investigated the role of regulatory T cells (Tregs) as regulators of the immune response in the brain, and assessed whether the persistent CNS infection can be modulated by manipulation of Tregs in the periphery. CD4(+) CD25(+) Foxp3(+) Tregs were expanded or depleted during the persistent phase of the CNS infection, and the consequences for the virus-specific immune response and the extent of persistent infection were analyzed. Virus-specific CD8(+) T cells predominantly recognising the H-2D(b)-presented viral hemagglutinin epitope MV-H(22-30) (RIVINREHL) were quantified in the brain by pentamer staining. Expansion of Tregs after intraperitoneal (i.p.) application of the superagonistic anti-CD28 antibody D665 inducing transient immunosuppression caused increased virus replication and spread in the CNS. In contrast, depletion of Tregs using diphtheria toxin (DT) in DEREG (depletion of regulatory T cells)-mice induced an increase of virus-specific CD8(+) effector T cells in the brain and caused a reduction of the persistent infection. These data indicate that manipulation of Tregs in the periphery can be utilized to regulate virus persistence in the CNS. 相似文献
4.
Differential tissue-specific regulation of antiviral CD8+ T-cell immune responses during chronic viral infection 下载免费PDF全文
The hallmarks of the immune response to viral infections are the expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) after they encounter antigen-presenting cells in the lymphoid tissues and their subsequent redistribution to nonlymphoid tissues to deal with the pathogen. Control mechanisms exist within CTL activation pathways to prevent inappropriate CTL responses against disseminating infections with a broad distribution of pathogen in host tissues. This is demonstrated during overwhelming infection with the noncytolytic murine lymphocytic choriomeningitis virus, in which clonal exhaustion (anergy and/or deletion) of CTLs prevents immune-mediated pathology but allows persistence of the virus. The mechanism by which the immune system determines whether or not to mount a full response to such infections is unknown. Here we present data showing that the initial encounter of specific CTLs with infected cells in lymphoid tissues is critical for this decision. Whether the course of the viral infection is acute or persistent for life primarily depends on the degree and kinetics of CTL exhaustion in infected lymphoid tissues. Virus-driven CTL expansion in lymphoid tissues resulted in the migration of large quantities of CTLs to nonlymphoid tissues, where they persisted at stable levels. Surprisingly, although virus-specific CTLs were rapidly clonally exhausted in lymphoid tissues under conditions of chronic infection, a substantial number of them migrated to nonlymphoid tissues, where they retained an effector phenotype for a long time. However, these cells were unable to control the infection and progressively lost their antiviral capacities (cytotoxicity and cytokine secretion) in a hierarchical manner before their eventual physical elimination. These results illustrate the differential tissue-specific regulation of antiviral T-cell responses during chronic infections and may help us to understand the dynamic relationship between antigen and T-cell populations in many persistent infections in humans. 相似文献
5.
CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. 总被引:21,自引:5,他引:21 下载免费PDF全文
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting. 相似文献
6.
Rejuvenating exhausted T cells during chronic viral infection 总被引:6,自引:0,他引:6
In a recent paper in Nature, show that the immunoreceptor PD-1 is upregulated by "exhausted" T cells during the chronic phase of viral infection in mice. Remarkably, blocking the interaction between PD-1 and its ligand, PD-L1, reactivates these T cells and reduces viral load. 相似文献
7.
Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection 下载免费PDF全文
Several primate models indicate that cytotoxic T lymphocyte-inducing vaccines may be unable to prevent human immunodeficiency virus infection but may have a long-term benefit in controlling viral replication and delaying disease progression. Here we show that analysis of the kinetics of antigen-specific CD8+ T-cell expansion suggests a delay in activation following infection that allows unimpeded early viral replication. Viral kinetics do not differ between controls and vaccinees during this delay phase. An increase in virus-specific CD8+ T-cell numbers around day 10 postinfection coincides with a slowing in viral replication in vaccinees and reduces peak viral loads by around 1 log. However, this response is too little too late to prevent establishment of persistent infection. 相似文献
8.
α-Galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+) T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+) T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+) T cells, as a consequence of reduced inflammation. 相似文献
9.
Guohua Feng Ji-Yuan Zhang Qing-Lei Zeng Lei Jin Junliang Fu Bin Yang Ying Sun Tianjun Jiang Xiangsheng Xu Zheng Zhang Jinhong Yuan Liyuan Wu Fu-Sheng Wang 《Molecules and cells》2013,36(4):362-367
Interleukin-21 (IL-21)+CD4+ T cells are involved in the immune response against hepatitis B virus (HBV) by secreting IL-21. However, the role of IL-21+CD4+ T cells in the immune response against chronic hepatitis C (CHC) virus infection is poorly understood. This study aimed to investigate the role of IL-21+CD4+ T cells in CHC patients and the potential mechanisms. The study subjects included nineteen CHC patients who were grouped by viral load (low, < 106 RNA copies/ml, n = 8; high, > 106 RNA copies/ml, n = 11). The peripheral frequency of HCV-specific IL-21+CD4+ T cells was higher in the low viral load group and was negatively correlated with the serum HCV RNA viral load in all CHC patients. Meanwhile, IL-21+ cells accumulated in the liver in the low viral load group. In vitro, IL-21 treatment increased the expression of proliferation markers and cytolytic molecules on HCV-specific CD8+ T cells. In summary, these findings suggest that HCV-specific IL-21+CD4+ T cells might contribute to HCV control by rescuing HCV-specific CD8+ T cells in CHC patients. 相似文献
10.
Wang T Gao Y Scully E Davis CT Anderson JF Welte T Ledizet M Koski R Madri JA Barrett A Yin Z Craft J Fikrig E 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(3):1825-1832
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection. 相似文献
11.
Gamma delta T cells are needed for ocular immune privilege and corneal graft survival 总被引:8,自引:0,他引:8
Skelsey ME Mellon J Niederkorn JY 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(7):4327-4333
It has been recognized for over a century that the anterior chamber of the eye is endowed with a remarkable immune privilege. One contributing component is the Ag-specific down-regulation of systemic delayed-type hypersensitivity (DTH) that is induced when Ags are introduced into the anterior chamber. This phenomenon, termed anterior chamber-associated immune deviation (ACAID), culminates in the generation of regulatory cells that inhibit the induction (afferent suppression) and expression (efferent suppression) of DTH. Since gamma delta T cells play a major role in other forms of immune regulation, we suspected they might contribute to the induction and expression of ACAID. Mice treated with anti-gamma delta Ab failed to develop ACAID following anterior chamber injection of either soluble Ag (OVA) or alloantigens (spleen cells). Additional experiments with knockout mice confirmed that mice lacking functional gamma delta T cells also fail to develop ACAID. Using a local adoptive transfer of DTH assay, we found that gamma delta T cells were required for the generation of regulatory T cells, but did not function as the efferent regulatory cells of ACAID. The importance of gamma delta T cells in corneal allograft survival was confirmed by blocking gamma delta T cells with GL3 Ab before corneal transplantation. While in vivo treatment with normal hamster serum had no effect on corneal graft survival, infusion of anti-gamma delta Ab resulted in a profound increase in corneal allograft rejection. Thus, gamma delta T cells are needed for sustaining at least one aspect of ocular immune privilege and for promoting corneal allograft survival. 相似文献
12.
Sud D Bigbee C Flynn JL Kirschner DE 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(7):4296-4314
Tuberculosis is the number one cause of death due to infectious disease in the world today. Understanding the dynamics of the immune response is crucial to elaborating differences between individuals who contain infection vs those who suffer active disease. Key cells in an adaptive immune response to intracellular pathogens include CD8(+) T cells. Once stimulated, these cells provide a number of different effector functions, each aimed at clearing or containing the pathogen. To explore the role of CD8(+) T cells in an integrative way, we synthesize both published and unpublished data to build and test a mathematical model of the immune response to Mycobacterium tuberculosis in the lung. The model is then used to perform a series of simulations mimicking experimental situations. Selective deletion of CD8(+) T cell subsets suggests a differential contribution for CD8(+) T cell effectors that are cytotoxic as compared with those that produce IFN-gamma. We also determined the minimum levels of effector memory cells of each T cell subset (CD4(+) and CD8(+)) in providing effective protection following vaccination. 相似文献
13.
Infection with West Nile virus (WNV) causes fatal encephalitis more frequently in immunocompromised humans than in those with a healthy immune system. Although a complete understanding of this increased risk remains unclear, experiments with mice have begun to define how different components of the adaptive and innate immune response function to limit infection. Previously, we demonstrated that components of humoral immunity, particularly immunoglobulin M (IgM) and IgG, have critical roles in preventing dissemination of WNV infection to the central nervous system. In this study, we addressed the function of CD8(+) T cells in controlling WNV infection. Mice that lacked CD8(+) T cells or classical class Ia major histocompatibility complex (MHC) antigens had higher central nervous system viral burdens and increased mortality rates after infection with a low-passage-number WNV isolate. In contrast, an absence of CD8(+) T cells had no effect on the qualitative or quantitative antibody response and did not alter the kinetics or magnitude of viremia. In the subset of CD8(+)-T-cell-deficient mice that survived initial WNV challenge, infectious virus was recovered from central nervous system compartments for several weeks. Primary or memory CD8(+) T cells that were generated in vivo efficiently killed target cells that displayed WNV antigens in a class I MHC-restricted manner. Collectively, our experiments suggest that, while specific antibody is responsible for terminating viremia, CD8(+) T cells have an important function in clearing infection from tissues and preventing viral persistence. 相似文献
14.
15.
Phenotypic and functional consequences of herpesvirus saimiri infection of human CD8+ cytotoxic T lymphocytes. 总被引:2,自引:2,他引:2 下载免费PDF全文
K R Berend J U Jung T J Boyle J M DiMaio S A Mungal R C Desrosiers H K Lyerly 《Journal of virology》1993,67(10):6317-6321
Herpesvirus saimiri (HVS) was used to infect and transform human CD8+ cytotoxic T lymphocytes (CTL), and the phenotypic and functional consequences of HVS infection of CD8+ T lymphocytes were investigated. HVS-transformed CTL no longer require antigen restimulation yet maintain their phenotype and HLA-restricted cytolytic function and specificity. The ability of HVS to transform CTL may have an important role in the functional analysis of human antigen-specific CTL. 相似文献
16.
Grayson JM Laniewski NG Lanier JG Ahmed R 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(9):4745-4751
Following many viral infections, there are large expansions of Ag-specific CD8(+) T cells. After viral clearance, mechanisms exist to ensure that the vast majority of effector cells undergo apoptosis. In studies of thymocyte apoptosis, loss of mitochondrial potential (deltapsi(m)) and excess production of reactive oxygen intermediates have been implicated as key events in cellular apoptosis. The purpose of the experiments presented in this work was to determine these parameters in Ag-specific CD8(+) T cells during a physiological response such as viral infection. Using lymphocytic choriomeningitis virus infection of mice, we found that Ag-specific CD8(+) effector T cells that had undergone recent TCR stimulation had an increased deltapsi(m). These cells also had increased levels of superoxide. As these cells progressed through the contraction of the immune response, their potential decreased, but superoxide levels remained similar to naive cells. One of the consequences of reduced mitochondrial potential is membrane permeability and subsequent caspase activation. We examined both the enzymatic activity and levels of cleaved caspase 3, an effector caspase, and could only detect increased levels in Ag-specific CD8(+) T cells on day 5 postinfection, a time point in which virus was still present. This contrasts with Ag-specific effector cells examined during the contraction phase that had no detectable caspase activity directly ex vivo. These data suggest that the apoptotic program begins earlier than previously expected on day 5, during the expansion phase. 相似文献
17.
18.
McMichael AJ Ogg G Wilson J Callan M Hambleton S Appay V Kelleher T Rowland-Jones S 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2000,355(1395):363-367
Cytotoxic T lymphocytes (CTLs) play a central role in the control of persistent HIV infection in humans. The kinetics and general features of the CTL response are similar to those found during other persisting virus infections in humans. During chronic infection there are commonly between 0.1 and 1.0% of all CD8+ T cells in the blood that are specific for immunodominant virus epitopes, as measured by HLA class I peptide tetramers. These figures are greatly in excess of the numbers found by limiting dilution assays; the discrepancy may arise because in the latter assay, CTLs have to divide many times to be detected and many of the HIV-specific CD8+ T cells circulating in infected persons may be incapable of further division. Many tetramer-positive T cells make interferon-gamma, beta-chemokines and perforin, so are probably functional. It is not known how fast these T cells turn over, but in the absence of antigen they decay in number. Impairment of CTL replacement, because CD4+ T helper cells are depleted by HIV infection, may play a major role in the development of AIDS. 相似文献
19.
Renewal of peripheral CD8+ memory T cells during secondary viral infection of antibody-sufficient mice 总被引:5,自引:0,他引:5
Cauley LS Cookenham T Hogan RJ Crowe SR Woodland DL 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(11):5597-5606
Kinetic studies and short pulses of injected 5-bromo-2-deoxyuridine have been used to analyze the development and renewal of peripheral CD8(+) memory T cells in the lungs during primary and secondary respiratory virus infections. We show that developing peripheral CD8(+) memory T cells proliferate during acute viral infection with kinetics that are indistinguishable from those of lymphoid CD8(+) memory T cells. Secondary exposure to the same virus induces a new round of T cell proliferation and extensive renewal of the peripheral and lymphoid CD8(+) memory T cell pools in both B cell-deficient mice and mice with immune Abs. In mice with virus-specific Abs, CD8(+) T cell proliferation takes place with minimal inflammation or effector cell recruitment to the lungs. The delayed arrival of CD8(+) memory T cells to the lungs of these animals suggests that developing memory cells do not require the same inflammatory signals as effector cells to reach the lung airways. These studies provide important new insight into mechanisms that control the maintenance and renewal of peripheral memory T cell populations during natural infections. 相似文献
20.
Immortalization of human T cells expressing T-cell receptor gamma delta by herpesvirus saimiri. 下载免费PDF全文
Herpesvirus saimiri (HVS) has recently been shown to immortalize human CD4+ and CD8+ T cells expressing T-cell receptor alpha beta (TCR-alpha beta) with the maintenance of their original phenotypes and functional properties. However, the immortalization of human T cells expressing TCR-gamma delta by HVS has not been successful. Here we report that HVS can also infect and immortalize human T cells expressing TCR-gamma delta. Two human TCR-gamma delta+ T-cell clones, which continuously proliferated in interleukin-2-containing culture medium without any exogenous stimulation or addition of feeder cells for more than 8 months, were established by HVS infection. Morphologically, the HVS-transformed TCR-gamma delta+ T-cell clones were granular lymphocytes which exhibited wide-range HLA-unrestricted cytotoxicity as untransformed TCR-gamma delta+ T cells. Their phenotypes and cytotoxic activities were not altered during long-term culture. The immortalization of human TCR-gamma delta+ T cells by HVS infection would be useful for functional analysis of this lymphocyte population, which is believed to play an important role in protection against various infectious diseases. 相似文献