首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic protein (BMP) signaling controls development and maintenance of many tissues. Genetic and quantitative approaches in Drosophila reveal that ligand isoforms show distinct function in wing development. Spatiotemporal control of BMP patterning depends on a network of extracellular proteins Pent, Ltl and Dally that regulate BMP signaling strength and morphogen range. BMP-mediated feedback regulation of Pent, Ltl, and Dally expression provides a system where cells actively respond to, and modify, the extracellular morphogen landscape to form a gradient that exhibits remarkable properties, including proportional scaling of BMP patterning with tissue size and the modulation of uniform tissue growth. This system provides valuable insights into mechanisms that mitigate the influence of variability to regulate cell-cell interactions and maintain organ function.  相似文献   

2.
The establishment of the dorsal-ventral axis of the Drosophila wing depends on the activity of the LIM-homeodomain protein Apterous. Apterous activity depends on the formation of a higher order complex with its cofactor Chip to induce the expression of its target genes. Apterous activity levels are modulated during development by dLMO. Expression of dLMO in the Drosophila wing is regulated by two distinct Chip dependent mechanisms. Early in development, Chip bridges two molecules of Apterous to induce expression of dLMO in the dorsal compartment. Later in development, Chip, independently of Apterous, is required for expression of dLMO in the wing pouch. We have conducted a modular P-element based EP (enhancer/promoter) misexpression screen to look for genes involved in Apterous activity. We have found Osa, a member of the Brahma chromatin-remodeling complex, as a positive modulator of Apterous activity in the Drosophila wing. Osa mediates activation of some Apterous target genes and repression of others, including dLMO. Osa has been shown to bind Chip. We propose that Chip recruits Osa to the Apterous target genes, thus mediating activation or repression of their expression.  相似文献   

3.
4.
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of Notch along the dorsoventral compartment boundary. We present evidence that the ability of cells to participate in this Apterous-dependent cell-interaction is under spatial and temporal control. Apterous-dependent expression of dLMO causes downregulation of Serrate and fringe and allows expression of delta in dorsal cells. This limits the time window during which dorsoventral cell interactions can lead to localized activation of Notch and induction of the dorsoventral organizer. Overactivation of Apterous in the absence of dLMO leads to overexpression of Serrate, reduced expression of delta and concomitant defects in differentiation and cell survival in the wing primordium. Thus, downregulation of Apterous activity is needed to allow normal wing development.  相似文献   

5.
6.
The Drosophila limb primordia are subdivided into compartments: cell populations that do not mix during development. The wing is subdivided into dorsal (D) and ventral (V) compartments by the activity of the selector gene apterous in D cells. Apterous causes segregation of D and V cell populations by at least two distinct mechanisms. The LRR transmembrane proteins Capricious and Tartan are transiently expressed in D cells and contribute to initial segregation of D and V cells. Signaling between D and V cells mediated by Notch and Fringe contributes to the maintenance of the DV affinity boundary. Given that Notch is activated symmetrically, in D and V cells adjacent to the boundary, its role in boundary formation remains somewhat unclear. We re-examine the roles of Apterous and Fringe activities in DV boundary formation and present evidence that Fringe cannot, by itself, generate an affinity difference between D and V cells. Although not sufficient, Fringe is required via Notch activation for expression of an Apterous-dependent affinity difference. We propose that Apterous controls expression of surface proteins that confer an affinity difference in conjunction with activated Notch. Thus, we view Apterous as instructive and Notch activity as essential, but permissive.  相似文献   

7.
8.
It has been proposed that wing veins in Drosophila form at boundaries between discrete sectors of cells that subdivide the anterior-posterior axis of the developing wing primordium. Recently, analysis of events underlying initiation of vein formation suggests that there is a general developmental mechanism for drawing lines between adjacent domains of cells, which is referred to as 'for-export-only-signaling'. In this model, cells in one domain produce a short range signal to which they cannot respond. As a consequence of this constraint, cells lying in a narrow line immediately outside the signal-producing domain are the only cells that can respond to the signal by activating expression of vein-promoting genes.  相似文献   

9.
It is clear that membrane transport is essential to the proper sorting and delivery of membrane bound receptors and ligands, and secreted signaling molecules. Molecular genetic studies in Drosophila are particularly well suited to studies of membrane transport in development. The conservation of cell signaling pathways and membrane transport molecules between Drosophila and other species makes the results obtained in these studies of general interest. In addition, the ability to generate gain- and loss-of-function genetic mutations of various strengths, and the ability to generate transgenic flies that direct protein expression to tissues during development are of particular advantage. Several recent papers suggest that interesting and novel roles for membrane transport processes will be uncovered by studying classically defined membrane transport proteins in developmental contexts. Together these studies suggest that regulation of membrane transport may represent an additional mechanism to regulate the strength of cell-cell signaling during development.  相似文献   

10.
Morphogenesis of the Drosophila wing depends on a series of cell-cell and cell-extracellular matrix interactions. During pupal wing development, two secreted proteins, encoded by the short gastrulation (sog) and decapentaplegic (dpp) genes, vie to position wing veins in the center of broad provein territories. Expression of the Bmp4 homolog dpp in vein cells is counteracted by expression of the Bmp antagonist sog in intervein cells, which results in the formation of straight veins of precise width. We screened for genetic interactions between sog and genes encoding a variety of extracellular components and uncovered interactions between sog and myospheroid (mys), multiple edematous wing (mew) and scab (scb), which encode betaPS, alphaPS1 and alphaPS3 integrin subunits, respectively. Clonal analysis reveals that integrin mutations affect the trajectory of veins inside the provein domain and/or their width and that misexpression of sog can alter the behavior of cells in such clones. In addition, we show that a low molecular weight form of Sog protein binds to alphaPS1betaPS. We find that Sog can diffuse from its intervein site of production into adjacent provein domains, but only on the dorsal surface of the wing, where Sog interacts functionally with integrins. Finally, we show that Sog diffusion into provein regions and the reticular pattern of extracellular Sog distribution in wild-type wings requires mys and mew function. We propose that integrins act by binding and possibly regulating the activity/availability of different forms of Sog during pupal development through an adhesion independent mechanism.  相似文献   

11.
12.
The developing wing disc of Drosophila is divided into distinct lineage-restricted compartments along both the anterior/posterior (A/P) and dorsal/ventral (D/V) axes. At compartment boundaries, morphogenic signals pattern the disc epithelium and direct appropriate outgrowth and differentiation of adult wing structures. The mechanisms by which affinity boundaries are established and maintained, however, are not completely understood. Compartment-specific adhesive differences and inter-compartment signaling have both been implicated in this process. The selector gene apterous (ap) is expressed in dorsal cells of the wing disc and is essential for D/V compartmentalization, wing margin formation, wing outgrowth and dorsal-specific wing structures. To better understand the mechanisms of Ap function and compartment formation, we have rescued aspects of the ap mutant phenotype with genes known to be downstream of Ap. We show that Fringe (Fng), a secreted protein involved in modulation of Notch signaling, is sufficient to rescue D/V compartmentalization, margin formation and wing outgrowth when appropriately expressed in an ap mutant background. When Fng and alphaPS1, a dorsally expressed integrin subunit, are co-expressed, a nearly normal-looking wing is generated. However, these wings are entirely of ventral identity. Our results demonstrate that a number of wing development features, including D/V compartmentalization and wing vein formation, can occur independently of dorsal identity and that inter-compartmental signaling, refined by Fng, plays the crucial role in maintaining the D/V affinity boundary. In addition, it is clear that key functions of the ap selector gene are mediated by only a small number of downstream effectors.  相似文献   

13.
Thorax closure in Drosophila is a process during adult morphogenesis in which the anterior ends of the presumptive notum of the two wing imaginal discs fuse to make a seamless thorax. Similar to dorsal closure during embryogenesis, this process is regulated by plegic and JNK signaling pathways. Despite the fact that Peripodial Membrane (PM) cells do not contribute to the formation of any adult structure, they are known to facilitate the process of thorax closure. Here we show that JNK signaling is activated only in a subset of PM cells, known as medial edge cells. While the mechanism that activates JNK signaling specifically in the medial edge cells of the PM is still not understood, the results presented here show that the pair rule gene odd skipped is required to ensure that JNK signaling is not activated anywhere else in the wing disc. Medial edge cells of the PM are elongated in shape, while the remaining PM cells are hexagonal. Down regulation of JNK signaling in the medial edge cells results in defective thorax closure in adult flies. It also causes the transformation of the morphology of medial edge cells into hexagonal shape. Conversely, activation of JNK signaling in hexagonal cells of the PM causes transformation of their morphology to elongated shape. Thus, similar to dorsal closure during embryogenesis, JNK-mediated elongation of medial edge cells is functionally correlated to the process of thorax closure.  相似文献   

14.
The recently discovered LIM motif is found in a set of homeodomain-containing proteins thought to mediate the generation of particular cell types. Of the four LIM domain family members described to date, mec-3 and lin-11 determine cell lineages in C. elegans. Isl-1 and Xlim-1 may play similar roles in vertebrates. We have identified a Drosophila member of this class, the product of the apterous (ap) gene. During embryogenesis, ap is expressed in a small subset of fusing mesodermal precursors that give rise to 6 muscles in each abdominal hemisegment and in 5 neurons within each corresponding CNS hemisegment. Lack of ap function results in loss of ap-expressing muscles, while misexpression of ap using a heterologous promoter produces ectopic muscles.  相似文献   

15.
Abstract. Developmental integration is the covariation among morphological structures due to connections between the developmental processes that built them. Here we use the methods of geometric morphometrics to study integration in the wing of Drosophila melanogaster . In particular, we focus on the hypothesis that the anterior and posterior wing compartments are separate developmental units that vary independently. We measured both variation among genetically diverse individuals and random differences between body sides of single individuals (fluctuating asymmetry, FA). For both of these sources of variation, the patterns of variation identified by principal component analyses all involved landmarks in both the anterior and posterior compartments simultaneously. Analyses focusing exclusively on the covariation between the anterior and posterior compartments, by the partial least-squares method, revealed pervasive integration of the two compartments, for both individual variation and FA. These analyses clearly indicate that the anterior and posterior compartments are not separate units of variation, but that the covariation between compartments is sufficient to account for nearly all the variation throughout the entire wing. We conclude that variation among individuals as well as the developmental perturbations responsible for FA generate shape variation primarily through developmental processes that are integrated across both compartments. In contrast, much less of the shape variation in our sample can be attributed to the localized processes that establish the identity of particular wing veins.  相似文献   

16.
17.
18.
We have studied several cell behaviour parameters of mutant alleles of fat (ft) in Drosophila imaginal wing disc development. Mutant imaginal discs continue growing in larvae delayed in pupariation and can reach sizes of several times those of wild-type. Their growth is, however, basically allometric. Homozygous ft cells grow faster than their twin cells in clones and generate larger territories, albeit delimited by normal clonal restrictions. Moreover, ft cells in clones tend to grow towards wing proximal regions. These behaviours can be related with failures in cell adhesiveness and cell recognition. Double mutant combinations with alleles of other genes, e.g. of the Epidermal growth factor receptor (DER) pathway, modify ft clonal phenotypes, indicating that adhesiveness is modulated by intercellular signalling. Mutant ft cells show, in addition, smaller cell sizes during proliferation and abnormal cuticular differentiation, which reflect cell membrane and cytoskeleton anomalies, which are not modulated by the DER pathway.  相似文献   

19.
The decapentaplegic (dpp) gene of Drosophila melanogaster encodes a polypeptide of the transforming growth factor-beta family of secreted factors. It is required for the proper development of both embryonic and adult structures, and may act as a morphogen in the embryo. In wing imaginal discs, dpp is expressed and required in a stripe of cells near the anterior-posterior compartment boundary. Here we show that viable mutations in the segment polarity genes patched (ptc) and costal-2 (cos2) cause specific alterations in dpp expression within the anterior compartment of the wing imaginal disc. The interaction between ptc and dpp is particularly interesting; both genes are expressed with similar patterns at the anterior-posterior compartment boundary of the disc, and mis-expressed in a similar way in segment polarity mutant backgrounds like ptc and cos2. This mis-expression of dpp could be correlated with some of the features of the adult mutant phenotypes. We propose that ptc controls dpp expression in the imaginal discs, and that the restricted expression of dpp near the anterior-posterior compartment boundary is essential to maintain the wild-type morphology of the wing disc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号