首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4(R)-Hydroxyproline in the Yaa position of the -Gly-Xaa-Yaa-repeated sequence of collagen plays a crucial role in the stability of the triple helix. Since the peptide (4(R)-Hyp-Pro-Gly)10 does not form a triple helix, it was generally believed that polypeptides with a -Gly-4(R)-Hyp-Yaa-repeated sequence do not form a triple helix. Recently, we found that acetyl-(Gly-4(R)-Hyp-Thr)10-NH2 forms a triple helix in aqueous solutions. To further study the role of 4(R)-hydroxyproline in the Xaa position, we made a series of acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptides where Yaa was alanine, serine, valine, and allo-threonine. We previously hypothesized that the hydroxyl group of threonine might form a hydrogen bond to the hydroxyl group of 4(R)hydroxyproline. In water, only the threonine- and the valine-containing peptides were triple helical. The remaining peptides did not form a triple helix in water. In 1,2- and in 1,3-propanediol at 4 degrees C, all the soluble peptides were triple helical. From the transition temperature of the triple helices, it was found that among the examined residues, threonine was the most stable residue in the acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptide. The transition temperatures of the valine- and allo-threonine-containing peptides were 10 degrees lower than those of the threonine peptide. Surprisingly, the serine-containing peptide was the least stable. These results indicate that the stability of these peptides depends on the presence of a methyl group as well as the hydroxyl group and that the stereo configuration of the two groups is essential for the stability. In the threonine peptide, we hypothesize that the methyl group shields the interchain hydrogen bond between the glycine and the Xaa residue from water and that the hydroxyl groups of threonine and 4(R)hydroxyproline can form direct or water-mediated hydrogen bonds.  相似文献   

2.
Unveiling sequence-stability and structure-stability relationships is a major goal of protein chemistry and structural biology. Despite the enormous efforts devoted, answers to these issues remain elusive. In principle, collagen represents an ideal system for such investigations due to its simplified sequence and regular structure. However, the definition of the molecular basis of collagen triple helix stability has hitherto proved to be a difficult task. Particularly puzzling is the decoding of the mechanism of triple helix stabilization/destabilization induced by imino acids. Although the propensity-based model, which correlates the propensities of the individual imino acids with the structural requirements of the triple helix, is able to explicate most of the experimental data, it is unable to predict the rather high stability of peptides embedding Gly-Hyp-Hyp triplets. Starting from the available X-ray structures of this polypeptide, we carried out an extensive quantum chemistry analysis of the mutual interactions established by hydroxyproline residues located at the X and Y positions of the Gly-X-Y motif. Our data clearly indicate that the opposing rings of these residues establish significant van der Waals and dipole-dipole interactions that play an important role in triple helix stabilization. These findings suggest that triple helix stabilization can be achieved by distinct structural mechanisms. The interplay of these subtle but recurrent effects dictates the overall stability of this widespread structural motif.  相似文献   

3.
Extensive studies on the structure of collagen have revealed that the hydroxylation of Pro residues in a variety of model peptides with the typical (X-Y-Gly)(n) repeats (X and Y: Pro and its analogues) represents one of the major factors influencing the stability of triple helices. While(2S,4R)-hydroxyproline (Hyp) at the position Y stabilizes the triple helix, (2S,4S)-hydroxyproline (hyp) at the X-position destabilizes the helix as demonstrated that the triple helix of (hyp-Pro-Gly)(15) is less stable than that of (Pro-Pro-Gly)(15) and that a shorter peptide (hyp-Pro-Gly)(10) does not form the helix. To clarify the role of the hydroxyl group of Pro residues to play in the stabilization mechanism of the collagen triple helix, we synthesized and crystallized a model peptide (Pro-Hyp-Gly)(4) -(hyp-Pro-Gly)(2) -(Pro-Hyp-Gly)(4) and analyzed its structure by X-ray crystallography and CD spectroscopy. In the crystal, the main-chain of this peptide forms a typical collagen like triple helix. The majority of hyp residues take down pucker with exceptionally shallow angles probably to relieve steric hindrance, but the remainders protrude the hydroxyl group toward solvent with the less favorable up pucker to fit in a triple helix. There is no indication of the existence of an intra-molecular hydrogen bond between the hydroxyl moiety and the carbonyl oxygen of hyp supposed to destabilize the triple helix. We also compared the conformational energies of up and down packers of the pyrrolidine ring in Ac-hyp-NMe(2) by quantum mechanical calculations.  相似文献   

4.
For the rational design of a stable collagen triple helix according to the conventional rule that the pyrrolidine puckerings of Pro, 4-hydroxyproline (Hyp) and 4-fluoroproline (fPro) should be down at the X-position and up at the Y-position in the X-Y-Gly repeated sequence for enhancing the triple helix propensities of collagen model peptides, a series of peptides were prepared in which X- and Y-positions were altogether occupied by Hyp(R), Hyp(S), fPro(R) or fPro(S). Contrary to our presumption that inducing the X-Y residues to adopt a down-up conformation would result in an increase in the thermal stability of peptides, the triple helices of (Hyp(S)-Hyp(R)-Gly)(10) and (fPro(S)-fPro(R)-Gly)(10) were less stable than those of (Pro-Hyp(R)-Gly)(10) and (Pro-fPro(R)-Gly)(10), respectively. As reported by B?chinger's and Zagari's groups, (Hyp(R)-Hyp(R)-Gly)(10) which could have an up-up conformation unfavorable for the triple helix, formed a triple helix that has a high thermal stability close to that of (Pro-Hyp(R)-Gly)(10). These results clearly show that the empirical rule based on the conformational preference of pyrrolidine ring at each of X and Y residues should not be regarded as still valid, at least for predicting the stability of collagen models in which both X and Y residues have electronegative groups at the 4-position.  相似文献   

5.
We have shown recently that glycosylation of threonine in the peptide Ac-(Gly-Pro-Thr)(10)-NH(2) with beta-d-galactose induces the formation of a collagen triple helix, whereas the nonglycosylated peptide does not. In this report, we present evidence that a collagen triple helix can also be formed in the Ac-(Gly-Pro-Thr)(10)-NH(2) peptide, if the proline (Pro) in the Xaa position is replaced with 4-trans-hydroxyproline (Hyp). Furthermore, replacement of Pro with Hyp in the sequence Ac-(Gly-Pro-Thr(beta-d-Gal))(10)-NH(2) increases the T(m) of the triple helix by 15.7 degrees C. It is generally believed that Hyp in the Xaa position destabilizes the triple helix because (Pro-Pro-Gly)(10) and (Pro-Hyp-Gly)(10) form stable triple helices but the peptide (Hyp-Pro-Gly)(10) does not. Our data suggest that the destabilizing effect of Hyp relative to Pro in the Xaa position is only true in the case of (Hyp-Pro-Gly)(10). Increasing concentrations of galactose in the solvent stabilize the triple helix of Ac-(Gly-Hyp-Thr)(10)-NH(2) but to a much lesser extent than that achieved by covalently linked galactose. The data explain some of the forces governing the stability of the annelid/vestimentiferan cuticle collagens.  相似文献   

6.
Two different collagens were isolated and characterized from the body walls of the vestimentiferan tube worm Riftia pachyptila and the annelid Alvinella pompejana, both living around hydrothermal vents at a depth of 2600 m. The acid-soluble cuticle collagens consisted of a long triple helix (2.4 microns for Alvinella, 1.5 microns for Riftia) terminating into a globular domain. Molecular masses of 2600 and 1700 kDa, respectively, were estimated from their dimensions. The two cuticle collagens were also quite different in amino acid composition, in agreement with their different supramolecular organizations within tissues. Interstitial collagens corresponding to cross-striated fibrils underneath the epidermal cells could be solubilized by digestion with pepsin and consisted of a single alpha-chain. They were similar in molecular mass (340 kDa) and length (280 nm) but differed in composition and banding patterns of segment-long-spacing fibrils. This implicates significant sequence differences also in comparison to fibril-forming vertebrate collagens, although all form typical quarter-staggered fibrils. The thermal stability of the worm collagens was, with one exception (interstitial collagen of Riftia), in the range of mammalian and bird collagens (37 to 46 degrees C), and thus distinctly above that of shallow sea water annelids. Yet, their 4-hydroxyproline contents were not directly correlated to this stability. About 20% of Riftia collagen alpha-chain sequence was elucidated by Edman degradation and showed typical Gly-X-Y repeats but only a limited homology (45 to 58% identity) to fibril-forming vertebrate collagens. A single triplet imperfection and the variable hydroxylation of proline in the X position were additional unique features. It suggests that this collagen represents an ancestral form of fibril-forming collagens not directly corresponding to an individual fibril-forming collagen type of vertebrates.  相似文献   

7.
The position of 3-hydroxyproline was investigated in the triplet sequences of peptides released by collagenase digestion of a collagen preparation from kidney cortex. Composition of the collagen preparation indicated that it was largely or wholly of basement membrane origin. 3-Hydroxyproline was detected in only one sequence, the tripeptide, glycyl-3-hydroxyprolyl-4-hydroxyproline, which accounted for a major fraction of the total 3-hydroxyproline obtained in the peptides released by collagenase. Preliminary data, based on sequencing the peptide mixture released by collagenase treatment, suggested that, in contrast, 4-hydroxyproline occurs predominantly if not exclusively in the Y position of Gly-X-Y triplet sequences in the collagen preparation studied.  相似文献   

8.
Differential scanning calorimetry (DSC) analyses of a series of collagen model peptides suggest that 4-hydroxyproline (Hyp) and 4-fluoroproline (fPro) have different effects on the stability of the collagen triple helices according to the sequence of amino acids and stereochemistry at the 4 positions of these imino acids. The thermodynamic parameters indicate that the enhanced stabilities are classified into two different types: the enthalpy term is primarily responsible for the enhanced stability of the triple helix of (Pro-Hyp(R)-Gly)(10), whereas the entropy term dominates the enhanced stability of (Pro-fPro(R)-Gly)(10). The difference between the molecular volumes observed in solution and intrinsic molecular volumes calculated from the crystal structure indicates the different hydration states of these peptides. (Pro-Hyp(R)-Gly)(10) is highly hydrated compared to (Pro-Pro-Gly)(10), which contributes to the larger enthalpy. In contrast, the volume of (Pro-fPro(R)-Gly)(10) shows a smaller degree of hydration than that of (Pro-Pro-Gly)(10). The entropic cost of forming the triple helix of the fPro-containing peptides is compensated by a decrease in an ordered structure of water molecules surrounding the peptide molecule, although the contribution of enthalpy originating from the hydration is reduced. These arguments about the different contribution of entropic and enthalpic terms were successfully applied to interpret the stability of the triple helix of (fPro(S)-Pro-Gly)(10) as well.  相似文献   

9.
An algorithm was derived to relate the amino acid sequence of a collagen triple helix to its thermal stability. This calculation is based on the triple helical stabilization propensities of individual residues and their intermolecular and intramolecular interactions, as quantitated by melting temperature values of host-guest peptides. Experimental melting temperature values of a number of triple helical peptides of varying length and sequence were successfully predicted by this algorithm. However, predicted T(m) values are significantly higher than experimental values when there are strings of oppositely charged residues or concentrations of like charges near the terminus. Application of the algorithm to collagen sequences highlights regions of unusually high or low stability, and these regions often correlate with biologically significant features. The prediction of stability from sequence indicates an understanding of the major forces maintaining this protein motif. The use of highly favorable KGE and KGD sequences is seen to complement the stabilizing effects of imino acids in modulating stability and may become dominant in the collagenous domains of bacterial proteins that lack hydroxyproline. The effect of single amino acid mutations in the X and Y positions can be evaluated with this algorithm. An interactive collagen stability calculator based on this algorithm is available online.  相似文献   

10.
The triple helix is a specialized protein motif, found in all collagens as well as in noncollagenous proteins involved in host defense. Peptides will adopt a triple-helical conformation if the sequence contains its characteristic features of Gly as every third residue and a high content of Pro and Hyp residues. Such model peptides have proved amenable to structural studies by x-ray crystallography and NMR spectroscopy, suitable for thermodynamic and kinetic analysis, and a valuable tool in characterizing the binding activities of the collagen triple helix. A systematic approach to understanding the amino acid sequence dependence of the collagen triple helix has been initiated, based on a set of host-guest peptides of the form, (Gly-Pro-Hyp)(3)-Gly-X-Y-(Gly-Pro-Hyp)(4). Comparison of their thermal stabilities has led to a propensity scale for the X and Y positions, and the additivity of contributions of individual residues is now under investigation. The local and global stability of the collagen triple helix is normally modulated by the residues in the X and Y positions, with every third position occupied by Gly in fibril-forming collagens. However, in collagen diseases, such as osteogenesis imperfecta, a single Gly may be substituted by another residue. Host-guest studies where the Gly is replaced by various amino acids suggest that the identity of the residue in the Gly position affects the degree of destabilization and the clinical severity of the disease.  相似文献   

11.
Amino acid sequence of the triple-helical domain of human collagen type VI   总被引:9,自引:0,他引:9  
The complete amino acid sequence of the triple-helical domain of human collagen VI was deduced from sequences of appropriate cDNA clones and confirmed to about 50% by Edman degradation of tryptic peptides. This domain consists of three different peptide segments containing some 335-336 amino acid residues originating from central portions of the alpha 1 (VI), alpha 2(VI), and alpha 3(VI) chains, respectively. Sequence identity in the X/Y positions of the Gly-X-Y repeats is rather low (10-15%) between the chains. Peculiar features of these sequences include 3 cysteine residues about 50 (alpha 3(VI)) and 89 (alpha 1(VI), alpha 2(VI)) residues away from the N-terminus and several Gly-X-Y interruptions clustered in the C-terminal two-thirds of the triple helix. These structures are presumably required for cross-linking collagen VI oligomers and for super-coiling of triple helices in the dimers. Other features include 11 Arg-Gly-Asp sequences, some of which are likely to be used as cell-binding sites, and four Asn-X-Thr sequences, allowing N-linked glycosylation along the triple helix. Junctional areas close to the helix contain short, cysteine-rich segments which may seal the triple-helical domain through disulfide bond formation, endowing it with high stability. These features, together with a low sequence homology to fiber-forming and basement-membrane collagens, document the unique character of collagen VI, whose triple helix is specifically adjusted for forming microfibrils in tissues.  相似文献   

12.
The amino acid sequence of collagen is composed of GlyXaaYaa repeats. A prevailing paradigm maintains that stable collagen triple helices form when (2S)-proline (Pro) or Pro derivatives that prefer the C(γ)-endo ring pucker are in the Xaa position and Pro derivatives that prefer the C(γ)-exo ring pucker are in the Yaa position. Anomalously, an amino acid sequence in an invertebrate collagen has (2S,4R)-4-hydroxyproline (Hyp), a C(γ)-exo-puckered Pro derivative, in the Xaa position. In certain contexts, triple helices with Hyp in the Xaa position are now known to be hyperstable. Most intriguingly, the sequence (GlyHypHyp)(n) forms a more stable triple helix than does the sequence (GlyProHyp)(n). Competing theories exist for the physicochemical basis of the hyperstability of (GlyHypHyp)(n) triple helices. By synthesizing and analyzing triple helices with different C(γ)-exo-puckered proline derivatives in the Xaa and Yaa positions, we conclude that interstrand dipole-dipole interactions are the primary determinant of their additional stability. These findings provide a new framework for understanding collagen stability.  相似文献   

13.
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.  相似文献   

14.
Sumana Giddu  Fei Xu  Vikas Nanda 《Proteins》2013,81(3):386-393
Stability of the collagen triple helix is largely governed by its imino acid content, namely the occurrence of proline and 4R‐hydroxyproline at the X and Y positions, respectively, of the periodic (Gly‐X‐Y)n sequence. Although other amino acids at these positions reduce stability of the triple helix, this can be partially compensated by introducing intermolecular side‐chain salt bridges. This approach was previously used to design an abc‐type heterotrimer composed of one basic, one acidic, and one neutral imino acid rich chain (Gauba and Hartgerink, J Am Chem Soc 2007;129:15034–15041). In this study, an abc‐type heterotrimer was designed to be the most stable species using a sequence recombination strategy that preserved both the amino acid composition and the network of interchain salt bridges of the original design. The target heterotrimer had the highest Tm of 50°C, 7°C greater than the next most stable species. Stability of the heterotrimer decreased with increasing ionic strength, consistent with the role of intermolecular salt bridges in promoting stability. Quantitative meta‐analysis of these results and published stability measurements on closely related peptides was used to discriminate the contributions of backbone propensity and side‐chain electrostatics to collagen stability. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
To facilitate the structural studies of invertebrate collagens, a sensitive and effective method was developed, using reverse-phase high-performance liquid chromatography for preparative isolation of the collagen subunits and their clostridial collagenase-derived peptides; the methods have been applied to Nereis cuticle collagen. The two subunits of denatured Nereis cuticle collagen, termed A and B, were initially separated by high-performance liquid chromatography. These polypeptides, with Mr of about 0.5 million, were each exhaustively digested with clostridial collagenase. The digest of the A subunit, which contains all of the uronic acid, was enriched for the uronic acid-containing glycopeptides by means of gel filtration. These glycopeptides were resolved into 23 major peaks, using reverse-phase HPLC, over a 5-h elution time, with an acetonitrile gradient (0-20%) containing 0.1% TFA. The amino acid composition data suggests that the peptides are of variable length, from 5 to 17 residues, while beta-elimination studies show that the uronic acid-containing moieties are all O-glycosidically linked to threonine residues, in the peptides examined. The amino acid sequence of one of the major glycopeptides was determined and found to be Gly-Hyp-Ala-Gly-Gly-Ile-Gly-Glu-Thr-Gly-Ala-Val-Gly-Leu-Hyp. The amino acid compositions of glycosylated and nonglycosylated peptides which had eluted, numbering about 100, showed a correspondence between hydrophobicity or hydrophilicity and emergence time from the column. We also found that the peptides most enriched in 4-hydroxyproline emerged earliest. These studies provide a foundation for elucidating the detailed structures of the large, unusual subunits of a well-characterized cuticle collagen.  相似文献   

16.
The collagen triple helix is characterized by the repeating sequence motif Gly-Xaa-Yaa, where Xaa and Yaa are typically proline and (2S,4R)-4-hydroxyproline (4(R)Hyp), respectively. Previous analyses have revealed that H-(Pro-4(R)Hyp-Gly)(10)-OH forms a stable triple helix, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not. Several theories have been put forth to explain the importance of proline puckering and conformation in triple helix formation; however, the details of how they affect triple helix stability are unknown. Underscoring this, we recently demonstrated that the polypeptide Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forms a triple helix that is more stable than Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). Here we report crystal the structure of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide at 1.55 A resolution. The puckering of the Yaa position 4(R)Hyp in this structure is up (Cgamma exo), as has been found in other collagen peptide structures. Notably, however, the 4(R)Hyp in the Xaa position also takes the up pucker, which is distinct from all other collagen structures. Regardless of the notable difference in the Xaa proline puckering, our structure still adopts a 7/2 superhelical symmetry similar to that observed in other collagen structures. Thus, the basis for the observed differences in the thermodynamic data of the triple helix<--> coil transition between our peptide and other triple helical peptides likely results from contributions from the unfolded state. Indeed, the unfolded state of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide seems to be stabilized by a preformed polyproline II helix in each strand, which could be explained by the presence of a unique repeating intra-strand water-mediated bridge observed in the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH structure, as well as a higher amount of trans peptide bonds.  相似文献   

17.
Cation–π interactions are found to be an important noncovalent force in proteins. Collagen is a right-handed triple helix composed of three left-handed PPII helices, in which (X–Y-Gly) repeats dominate in the sequence. Molecular modeling indicates that cation–π interactions could be formed between the X and Y positions in adjacent collagen strands. Here, we used a host–guest peptide system: (Pro-Hyp-Gly)3-(Pro-Y-Gly-X-Hyp-Gly)-(Pro-Hyp-Gly)3, where X is an aromatic residue and Y is a cationic residue, to study the cation–π interaction in the collagen triple helix. Circular dichroism (CD) measurements and Tm data analysis show that the cation–π interactions involving Arg have a larger contribution to the conformational stability than do those involving Lys, and Trp forms a weaker cation–π interaction with cationic residues than expected as a result of steric effects. The results also show that the formation of cation–π interactions between Arg and Phe depends on their relative positions in the strand. Moreover, the fluorinated and methylated Phe substitutions show that an electron-withdrawing or electron-donating substituent on the aromatic ring can modulate its π–electron density and the cation–π interaction in collagen. Our data demonstrate that the cation–π interaction could play an important role in stabilizing the collagen triple helix.  相似文献   

18.
The standard collagen triple‐helix requires a perfect (Gly‐Xaa‐Yaa)n sequence, yet all nonfibrillar collagens contain interruptions in this tripeptide repeating pattern. Defining the structural consequences of disruptions in the sequence pattern may shed light on the biological role of sequence interruptions, which have been suggested to play a role in molecular flexibility, collagen degradation, and ligand binding. Previous studies on model peptides with 1‐ and 4‐residue interruptions showed a localized perturbation within the triple‐helix, and this work is extended to introduce natural collagen interruptions up to nine residue in length within a fixed (Gly‐Pro‐Hyp)n peptide context. All peptides in this set show decreases in triple‐helix content and stability, with greater conformational perturbations for the interruptions longer than five residue. The most stable and least perturbed structure is seen for the 5‐residue interruption peptide, whose sequence corresponds to a Gly to Ala missense mutation, such as those leading to collagen genetic diseases. The triple‐helix peptides containing 8‐ and 9‐residue interruptions exhibit a strong propensity for self‐association to fibrous structures. In addition, a small peptide modeling only the 9‐residue sequence within the interruption aggregates to form amyloid‐like fibrils with antiparallel β‐sheet structure. The 8‐ and 9‐residue interruption sequences studied here are predicted to have significant cross‐β aggregation potential, and a similar propensity is reported for ~10% of other naturally occurring interruptions. The presence of amyloidogenic sequences within or between triple‐helix domains may play a role in molecular association to normal tissue structures and could participate in observed interactions between collagen and amyloid.  相似文献   

19.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

20.
Collagen has a triple helical structure comprising strands with a repeating Xaa-Yaa-Gly sequence. L-Proline (Pro) and 4(R)-hydroxyl-L-proline (4(R)Hyp) residues are found most frequently in the Xaa and Yaa positions. However, in natural collagen, 3(S)-hydroxyl-L-proline (3(S)Hyp) occurs in the Xaa positions to varying extents and is most common in collagen types IV and V. Although 4(R)Hyp residues in the Yaa positions have been shown to be critical for the formation of a stable triple helix, the role of 3(S)Hyp residues in the Xaa position is not well understood. Indeed, recent studies have demonstrated that the presence of 3(S)Hyp in the Xaa positions of collagen-like peptides actually has a destabilizing effect relative to peptides with Pro in these locations. Whether this destabilization is reflected in a local unfolding or in other structural alterations of the collagen triple helix is unknown. Thus, to determine what effect the presence of 3(S)Hyp residues in the Xaa positions has on the overall conformation of the collagen triple helix, we determined the crystal structure of the polypeptide H-(Gly-Pro-4(R)Hyp)3-(Gly-3(S)Hyp-4(R)Hyp)2-(Gly-Pro-4(R)Hyp)4-OH to 1.80 A resolution. The structure shows that, despite the presence of the 3(S)Hyp residues, the peptide still adopts a typical 7/2 superhelical symmetry similar to that observed in other collagen structures. The puckering of the Xaa position 3(S)Hyp residues, which are all down (Cgamma-endo), and the varphi/psi dihedral angles of the Xaa 3(S)Hyp residues are also similar to those of typical collagen Pro Xaa residues. Thus, the presence of 3(S)Hyp in the Xaa positions does not lead to large structural alterations in the collagen triple helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号