首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Histidyl-tRNA synthetase (HisRS) differs from other class II aminoacyl-tRNA synthetases (aaRS) in that it harbors an arginine at a position where the others bind a catalytic Mg2+ ion. In computer experiments, four mutants of HisRS from Escherichia coli were engineered by removing the arginine and introducing a Mg2+ ion and residues from seryl-tRNA synthetase (SerRS) that are involved in Mg2+ binding. The mutants recreate an active site carboxylate pair conserved in other class II aaRSs, in two possible orders: Glu-Asp or Asp-Glu, replacing Glu-Thr in native HisRS. The mutants were simulated by molecular dynamics in complex with histidyl-adenylate. As controls, the native HisRS was simulated in complexes with histidine, histidyl-adenylate, and histidinol. The native structures sampled were in good agreement with experimental structures and biochemical data. The two mutants with the Glu-Asp sequence showed significant differences in active site structure and Mg2+ coordination from SerRS. The others were more similar to SerRS, and one of them was analyzed further through simulations in complex with histidine, and His+ATP. The latter complex sampled two Mg2+ positions, depending on the conformation of a loop anchoring the second carboxylate. The lowest energy conformation led to an active site geometry very similar to SerRS, with the principal Mg2+ bridging the α- and β-phosphates, the first carboxylate (Asp) coordinating the ion through a water molecule, and the second (Glu) coordinating it directly. This mutant is expected to be catalytically active and suggests a basis for the previously unexplained conservation of the active site Asp-Glu pair in class II aaRSs other than HisRS. Proteins 32:362–380, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The CorA Mg2+ channel is a homopentamer with five-fold symmetry. Each monomer consists of a large cytoplasmic domain and two transmembrane helices connected via a short periplasmic loop. In the Thermotoga maritima CorA crystal structure, a Mg2+ is bound between D89 of one monomer and D253 of the adjacent monomer (M1 binding site). Release of Mg2+ from these sites has been hypothesized to cause opening of the channel. We generated mutants to disrupt Mg2+ interaction with the M1 site. Crystal structures of the D89K/D253K and D89R/D253R mutants, determined to 3.05 and 3.3?Å, respectively, showed no significant structural differences with the wild type structure despite absence of Mg2+ at the M1 sites. Both mutants still appear to be in the closed state. All three mutant CorA proteins exhibited transport of 63Ni2+, indicating functionality. Thus, absence of Mg2+ from the M1 sites neither causes channel opening nor prevents function. We also provide evidence that the T. maritima CorA is a Mg2+ channel and not a Co2+ channel.  相似文献   

3.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

4.
The native structure of the Azoarcus group I ribozyme is stabilized by the cooperative formation of tertiary interactions between double helical domains. Thus, even single mutations that break this network of tertiary interactions reduce ribozyme activity in physiological Mg2+ concentrations. Here, we report that molecular crowding comparable to that in the cell compensates for destabilizing mutations in the Azoarcus ribozyme. Small angle X-ray scattering, native polyacrylamide gel electrophoresis and activity assays were used to compare folding free energies in dilute and crowded solutions containing 18% PEG1000. Crowder molecules allowed the wild-type and mutant ribozymes to fold at similarly low Mg2+ concentrations and stabilized the active structure of the mutant ribozymes under physiological conditions. This compensation helps explains why ribozyme mutations are often less deleterious in the cell than in the test tube. Nevertheless, crowding did not rescue the high fraction of folded but less active structures formed by double and triple mutants. We conclude that crowding broadens the fitness landscape by stabilizing compact RNA structures without improving the specificity of self-assembly.  相似文献   

5.
The function of guanine nucleotide binding (G) proteins is Mg2+ dependent with guanine nucleotide exchange requiring higher metal ion concentration than guanosine 5′-triphosphate hydrolysis. It is unclear whether two Mg2+ binding sites are present or if one Mg2+ binding site exhibits different affinities for the inactive GDP-bound or the active GTP-bound conformations. We used furaptra, a Mg2+-specific fluorophore, to investigate Mg2+ binding to α subunits in both conformations of the stimulatory (G) and inhibitory (Giα1) regulators of adenylyl cyclase. Regardless of the conformation or α protein studied, we found that two distinct Mg2+ sites were present with dissimilar affinities. With the exception of G in the active conformation, cooperativity between the two Mg2+ sites was also observed. Whereas the high affinity Mg2+ site corresponds to that observed in published X-ray structures of G proteins, the low affinity Mg2+ site may involve coordination to the terminal phosphate of the nucleotide.  相似文献   

6.
Abstract

Pyrimidine α-ODNs containing 5-Me-α-dC(N-4-spermine) at the 5′-end or in the sequence were synthesized. The corresponding αββ triple helices were strongly stabilized by Mg2+ cations. Unlike in β-series these triplexes were not stabilized at pH 7.  相似文献   

7.
β2 microglobulin (β2m) is the light chain of class‐I major histocompatibility complex (MHC‐I). Its accumulation in the blood of patients affected by kidney failure leads to amyloid deposition around skeletal joints and bones, a severe condition known as Dialysis Related Amyloidosis (DRA). In an effort to dissect the structural determinants of β2m aggregation, several β2m mutants have been previously studied. Among these, three single‐residue mutations in the loop connecting strands D and E (W60G, W60V, D59P) have been shown to affect β2m amyloidogenic properties, and are here considered. To investigate the biochemical and biophysical properties of wild‐type (w.t.) β2m and the three mutants, we explored thermal unfolding by Trp fluorescence and circular dichroism (CD). The W60G mutant reveals a pronounced increase in conformational stability. Protein oligomerization and reduction kinetics were investigated by electrospray‐ionization mass spectrometry (ESI‐MS). All the mutations analyzed here reduce the protein propensity to form soluble oligomers, suggesting a role for the DE‐loop in intermolecular interactions. A partially folded intermediate, which may be involved in protein aggregation induced by acids, accumulates for all the tested proteins at pH 2.5 under oxidizing conditions. Moreover, the kinetics of disulfide reduction reveals specific differences among the tested mutants. Thus, β2m DE‐loop mutations display long‐range effects, affecting stability and structural properties of the native protein and its low‐pH intermediate. The evidence presented here hints to a crucial role played by the DE‐loop in determining the overall properties of native and partially folded β2m.  相似文献   

8.
Beta-2 microglobulin (β2m) is the light chain of Class I major histocompatibility complex (MHC-I) complex. β2m is an intrinsically amyloidogenic protein capable of forming amyloid fibrils in vitro and in vivo. β2m displays the typical immunoglobulin-like fold with a disulphide bridge (Cys25-Cys80) cross-linking the two β-sheets. Engineering of the loop comprised between β-strands D and E has shown that mutations in this region affect protein structure, fold stability, folding kinetics and amyloid aggregation properties. Such overall effects have been related to the DE loop backbone structure, which presents a strained conformation in the wild-type (wt) protein, and a type I β-turn in the W60G mutant. Here, we report a biophysical and structural characterization of the K58P-W60G β2m mutant, where a Pro residue has been introduced in the type I β-turn i + 1 position. The K58P-W60G mutant shows improved chemical and temperature stability and faster folding relative to wt β2m. The crystal structure (1.25 ? resolution) shows that the Cys25-Cys80 disulphide bridge is unexpectedly severed, in agreement with electrospray ionization-mass spectrometry (ESI-MS) spectra that indicate that a fraction of the purified protein lacks the internal disulphide bond. These observations suggest a stabilizing role for Pro58, and stress a crucial role for the DE loop in determining β2m biophysical properties.  相似文献   

9.
The hypothesis that His159 in yeast enolase moves on a polypeptide loop to protonate the phosphoryl of 2-phosphoglycerate to initiate its conversion to phosphoenolpyruvate was tested by preparing H159N, H159A, and H159F enolases. These have 0.07%–0.25% of the native activity under standard assay conditions and the pH dependence of maximum velocities of H159A and H159N mutants is markedly altered. Activation by Mg2+ is biphasic, with the smaller Mg2+ activation constant closer to that of the catalytic Mg2+ binding site of native enolase and the larger in the mM range in which native enolase is inhibited. A third Mg2+ may bind to the phosphoryl, functionally replacing proton donation by His159. N207A enolase lacks an intersubunit interaction that stabilizes the closed loop(s) conformation when 2-phosphoglycerate binds. It has 21% of the native activity, also exhibits biphasic Mg2+ activation, and its reaction with the aldehyde analogue of the substrate is more strongly inhibited than is its normal enzymatic reaction. Polypeptide loop(s) closure may keep a proton from His159 interacting with the substrate phosphoryl oxygen long enough to stabilize a carbanion intermediate.  相似文献   

10.
The effects of eight divalent metal ions on fully neutralized poly(S-carboxyethyl-l-cysteine) have been studied by means of circular dichroism. Four ionic species (Cd2+, Cu2+, Zn2+ and Ni2+) effectively induce the β-form, while the other four species (Co2+, Ba2+, Ca2+ and Mg2+) are not effective. Specifically, Mg(ClO4)2 is ineffective, even at 1.86 m. The effect of Cu2+ ions on the polypeptide conformation is significant at pH values other than in the neural range. Comparison of the present results with previous ones from the lower side chain homologue, poly(S-carboxymethyl-l-cysteine), shows that Cd2+ and Zn2+ ions are more effetive but Co2+ ions are much less effective in the polypeptide studied here. Random coils of poly(S-carboxyethyl-l-cysteine) are more soluble while the β-form is less soluble compared with the respective conformations of the lower side-chain homologue.  相似文献   

11.
Detrimental effects of salinity on plants are known to be partially alleviated by external Ca2+. Previous work demonstrated that the Arabidopsis SOS3 locus encodes a Ca2+‐binding protein with similarities to CnB, the regulatory subunit of protein phosphatase 2B (calcineurin). In this study, we further characterized the role of SOS3 in salt tolerance. We found that reduced root elongation of sos3 mutants in the presence of high concentrations of either NaCl or LiCl is specifically rescued by Ca2+ and not Mg2+, whereas root growth is rescued by both Ca2+ and Mg2+ in the presence of high concentrations of KCl. Phenocopies of sos3 mutants were obtained in wild‐type plants by the application of calmodulin and calcineurin inhibitors. These data provide further evidence that SOS3 is a calcineurin‐like protein and that calmodulin plays an important role in the signalling pathways involved in plant salt tolerance. The origin of the elevated Na : K ratio in sos3 mutants was investigated by comparing Na+ efflux and influx in both mutant and wild type. No difference in Na+ influx was recorded between wild type and sos3; however, sos3 plants showed a markedly lower Na+ efflux, a property that would contribute to the salt‐oversensitive phenotype of sos3 plants.  相似文献   

12.
Neurospora crassa membrane preparations incorporated mannose from GDP-mannose-[14C] in the presence of Mg2+ into a polyprenol lipid and side chains of protein acceptor(s), which are labile on hydrolysis in weak base. The addition of Mn2+ to the reaction mixtures does not affect mannosyl lipid synthesis but it stimulates the transfer of mannose to larger oligosaccharide chains resistant to β-elimination and the transfer of a second mannosyl unit to form an O-glycosidically linked mannobiosyl side chain. Incubation of particulate preparations with polyprenol-mannose-[14C] in the presence of Mg2+ and Mn2+ also results in the transfer of a single mannose to the protein. When non-radioactive GDP-mannose is added to this reaction mixture, however, β-elimination yields mannobiose. The mannobiose is labeled in the reducing sugar only. These results indicate that the first mannose of this mannobiosyl side chain is transferred via a lipid intermediate, but the second mannose is transferred directly from GDP-mannose. In the presence of Mg2+ and Mn2+, mannose apparently is also transferred from polyprenol-mannose-[14C] to side chains which are resistant to hydrolysis.  相似文献   

13.
To elucidate the biological functions of the ribosomal protein L34, which is encoded by the rpmH gene, the rpmH deletion mutant of Bacillus subtilis and two suppressor mutants were characterized. Although the ΔrpmH mutant exhibited a severe slow-growth phenotype, additional mutations in the yhdP or mgtE gene restored the growth rate of the ΔrpmH strain. Either the disruption of yhdP, which is thought to be involved in the efflux of Mg2+, or overexpression of mgtE, which plays a major role in the import of Mg2+, could suppress defects in both the formation of the 70S ribosome and growth caused by the absence of L34. Interestingly, the Mg2+ content was lower in the ΔrpmH cells than in the wild type, and the Mg2+ content in the ΔrpmH cells was restored by either the disruption of yhdP or overexpression of mgtE. In vitro experiments on subunit association demonstrated that 50S subunits that lacked L34 could form 70S ribosomes only at a high concentration of Mg2+. These results showed that L34 is required for efficient 70S ribosome formation and that L34 function can be restored partially by Mg2+. In addition, the Mg2+ content was consistently lower in mutants that contained significantly reduced amounts of the 70S ribosome, such as the ΔrplA (L1) and ΔrplW (L23) strains and mutant strains with a reduced number of copies of the rrn operon. Thus, the results indicated that the cellular Mg2+ content is influenced by the amount of 70S ribosomes.  相似文献   

14.
Kir channels display voltage-dependent block by cytosolic cations such as Mg2+ and polyamines that causes inward rectification. In fact, cations can regulate K channel activity from both the extracellular and intracellular sides. Previous studies have provided insight into the up-regulation of Kir channel activity by extracellular K+ concentration. In contrast, extracellular Mg2+ has been found to reduce the amplitude of the single-channel current at milimolar concentrations. However, little is known about the molecular mechanism of Kir channel blockade by external Mg2+ and the relationship between the Mg2+ blockade and activity potentiation by permeant K+ ions. In this study, we applied an interactive approach between theory and experiment. Electrophysiological recordings on Kir2.2 and its mutants were performed by heterologous expression in Xenopus laevis oocytes. Our results confirmed that extracellular Mg2+ could reduce heterologously expressed WT Kir2.2 currents in a voltage dependent manner. The kinetics of inhibition and recovery of Mg2+ exhibit a 3∼4s time constant. Molecular dynamics simulation results revealed a Mg2+ binding site located at the extracellular mouth of Kir2.2 that showed voltage-dependent Mg2+ binding. The mutants, G119D, Q126E and H128D, increased the number of permeant K+ ions and reduced the voltage-dependent blockade of Kir2.2 by extracellular Mg2+.  相似文献   

15.
The cardiac sarcolemmal Na+-Ca2+ exchanger is modulated by intrinsic regulatory mechanisms. A large intracellular loop of the exchanger participates in the regulatory responses. We have proposed (Li, Z., D.A. Nicoll, A. Collins, D.W. Hilgemann, A.G. Filoteo, J.T. Penniston, J.N. Weiss, J.M. Tomich, and K.D. Philipson. 1991. J. Biol. Chem. 266:1014–1020) that a segment of the large intracellular loop, the endogenous XIP region, has an autoregulatory role in exchanger function. We now test this hypothesis by mutational analysis of the XIP region. Nine XIP-region mutants were expressed in Xenopus oocytes and all displayed altered regulatory properties. The major alteration was in a regulatory mechanism known as Na+-dependent inactivation. This inactivation is manifested as a partial decay in outward Na+-Ca2+ exchange current after application of Na+ to the intracellular surface of a giant excised patch. Two mutant phenotypes were observed. In group 1 mutants, inactivation was markedly accelerated; in group 2 mutants, inactivation was completely eliminated. All mutants had normal Na+ affinities. Regulation of the exchanger by nontransported, intracellular Ca2+ was also modified by the XIP-region mutations. Binding of Ca2+ to the intracellular loop activates exchange activity and also decreases Na+-dependent inactivation. XIP-region mutants were all still regulated by Ca2+. However, the apparent affinity of the group 1 mutants for regulatory Ca2+ was decreased. The responses of all mutant exchangers to Ca2+ application or removal were markedly accelerated. Na+-dependent inactivation and regulation by Ca2+ are interrelated and are not completely independent processes. We conclude that the endogenous XIP region is primarily involved in movement of the exchanger into and out of the Na+-induced inactivated state, but that the XIP region is also involved in regulation by Ca2+.  相似文献   

16.
Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5′-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 Å resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed β- and γ-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal domains. The Arg40 residue from the conserved GXGRXG motif is shown to interact with the carboxyl group of biotin and to stabilise the α- and β-phosphates of the nucleotide. The structure of the mutant AaBPL R40G in both the ligand-free and biotin-bound forms reveals that the mutated loop has collapsed, thus hindering ATP binding. Isothermal titration calorimetry indicated that the presence of biotin is not required for ATP binding to wild-type AaBPL in the absence of Mg2+, and the binding of biotin and ATP has been determined to occur via a random but cooperative process. The affinity for biotin is relatively unaffected by the R40G mutation. In contrast, the thermodynamic data indicate that binding of ATP to AaBPL R40G is very weak in the absence or in the presence of biotin. The AaBPL R40G mutant remains catalytically active but shows poor substrate specificity; mass spectrometry and Western blot studies revealed that the mutant biotinylates both the target A. aeolicus BCCPΔ67 fragment and BSA, and is subject to self-biotinylation.  相似文献   

17.
《Genomics》2020,112(5):3729-3738
Cucumber mosaic virus infection leads to mosaic symptoms on a broad range of crop plants. Mutation at positions 129 in the coat protein of virus causes alterations in the severity of symptoms caused by the viral infection. In our investigation, we performed long term molecular dynamics simulations to elucidate the effect of different amino acid substitutes (infectious and non-infectious) at position 129 in the coat protein of Cucumber mosaic virus using various structural parameters. We found that the contagious mutants displayed more flexibility at loops βE-αEF (129–136) and βF-βG loop (155–163) as compared to the non-infectious and native structures. This specific study at the atomic level yields innovative ideas for designing new therapeutic agents against the pathogen, which would further pave the path for researchers to control this devastating plant virus.  相似文献   

18.
An important nucleation event during the folding of staphylococcal nuclease involves the formation of a β‐hairpin by the sequence 21DTVKLMYKGQPMTFR35. Earlier studies show that the turn sequence ‘YKGQP’ has an important role in the folding of this β‐hairpin. To understand the active or passive nature of the turn sequence ‘YKGQP’ in the folding of the aforementioned β‐hairpin sequence, we studied glycine mutant peptides Ac‐2DTVKLMYGGQPMTFR16‐NMe (K9G:15), Ac‐2DTVKLMYKGGPMTFR16‐NMe (Q11G:15), Ac‐2DTVKLMYGGGPMTFR16‐NMe (K9G/Q11G:15), and Ac‐2DTVKLMGGGGGMTFR16‐NMe (penta‐G:15) by using molecular dynamics simulations, starting with two different unfolded states, polyproline II and extended conformational forms. Further, 5mer mutant turn peptides Ac‐2YGGQP6‐NMe (K3G:5), Ac‐2YKGGP6‐NMe (Q5G:5), Ac‐2YGGGP6‐NMe (K3G/Q5G:5), and Ac‐2GGGGG6‐NMe (penta‐G:5) were also studied individually. Our results show that an initial hydrophobic collapse and loop closure occurs in all 15mer mutants, but only K9G:15 mutant forms a stable native‐like β‐hairpin. In the other 15mer mutants, the hydrophobic collapsed state would not proceed to β‐hairpin formation. Of the different simulations performed for the penta‐G:15 mutant, in only one simulation a nonnative β‐hairpin conformation is sampled with highly flexible loop region (8GGGGG12), which has no specific conformational preference as a 5mer. While the sequence ‘YGGQP’ in the K3G:5 simulation shows relatively higher β‐turn propensity, the presence of this sequence in K9G:15 peptide seems to be driving the β‐hairpin formation. Thus, these results seem to suggest that for the formation of a stable β‐hairpin, the initial hydrophobic collapse is to be assisted by a turn propensity. Initial hydrophobic collapse alone is not sufficient to guide β‐hairpin formation. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
FeoB in bacteria and archaea is involved in the uptake of ferrous iron (Fe2+), an important cofactor in biological electron transfer and catalysis. Unlike any other known prokaryotic membrane protein, FeoB contains a GTP-binding domain at its N-terminus. We determined high-resolution X-ray structures of the FeoB G-domain from Methanococcus jannaschii with and without bound GDP or Mg2+-GppNHp. The G-domain forms the same dimer in all three structures, with the nucleotide-binding pockets at the dimer interface, as in the ATP-binding domain of ABC transporters. The G-domain follows the typical fold of nucleotide-binding proteins, with a β-strand inserted in switch I that becomes partially disordered upon GTP binding. Switch II does not contact the nucleotide directly and does not change its conformation in response to the bound nucleotide. Release of the nucleotide causes a rearrangement of loop L6, which we identified as the G5 region of FeoB. Together with the C-terminal helix, this loop may transmit the information about the nucleotide-bound state from the G-domain to the transmembrane region of FeoB.  相似文献   

20.
Stem loop 1 (SL1) is a highly conserved hairpin in the 5′-leader of the human immunodeficiency virus type I that forms a metastable kissing dimer that is converted during viral maturation into a stable duplex with the aid of the nucleocapsid (NC) protein. SL1 contains a highly conserved internal loop that promotes the kissing–duplex transition by a mechanism that remains poorly understood. Using NMR, we characterized internal motions induced by the internal loop in an SL1 monomer that may promote the kissing–duplex transition. This includes micro-to-millisecond secondary structural transitions that cause partial melting of three base-pairs above the internal loop making them key nucleation sites for exchanging strands and nanosecond rigid-body stem motions that can help bring strands into spatial register. We show that while Mg2+ binds to the internal loop and arrests these internal motions, it preserves and/or activates local mobility at internal loop residues G272 and G273 which are implicated in NC binding. By stabilizing SL1 without compromising the accessibility of G272 and G273 for NC binding, Mg2+ may increase the dependence of the kissing–duplex transition on NC binding thus preventing spontaneous transitions from taking place and ensuring that viral RNA and protein maturation occur in concert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号