首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic protein-2 (BMP-2), is a potential factor to enhance osseointegration of dental implants. However, the appropriate cellular system to investigate the osteogenic effect of BMP-2 in vitro in a standardized manner still needs to be defined. The aim of this study was to examine the effect of BMP-2 on the cell proliferation and osteogenic differentiation of human osteogenic progenitors of various origins: dental pulp stem cells (DPSC), human osteosarcoma cell line (Saos-2) and human embryonic palatal mesenchymal cell line (HEPM). For induction of osteogenic differentiation, cell culture medium was supplemented with BMP-2 homodimer alone or in combination with conventionally used differentiation inducing agents. Differentiation was monitored for 6–18 days. To assess differentiation, proliferation rate, alkaline phosphatase activity, calcium deposition and the expression level of osteogenic differentiation marker genes (Runx2, BMP-2) were measured. BMP-2 inhibited cell proliferation in a concentration and time-dependent manner. In a concentration which caused maximal cell proliferation, BMP-2 did not induce osteogenic differentiation in any of the tested systems. However, it had a synergistic effect with the osteoinductive medium in both DPSC and Saos-2, but not in HEPM cells. We also found that the differentiation process was faster in Saos-2 than in DPSCs. Osteogenic differentiation could not be induced in the osteoblast progenitor HEPM cells. Our data suggest that in a concentration that inhibits proliferation the differentiation inducing effect of BMP-2 is evident only in the presence of permissive osteoinductive components. β-glycerophosphate, was identified interacting with BMP-2 in a synergistic manner.  相似文献   

2.
All-trans retinoic acid (ATRA) is a widely used differentiation drug that can effectively induce osteogenic differentiation of osteosarcoma cells, but the underlying mechanism remains elusive, which limits the clinical application for ATRA in osteosarcoma patients. In this study, we identified E2F1 as a novel regulator involved in ATRA-induced osteogenic differentiation of osteosarcoma cells. We observed that osteosarcoma cells are coupled with individual differences in the expression levels of E2F1 in patients, and E2F1 impairs ATRA-induced differentiation of osteosarcoma cells. Moreover, remarkable anti-proliferative and differentiation-inducing effects of ATRA treatment are only observed in E2F1 low to negative expressed primary osteosarcoma cultures. These results strongly suggested that E2F1 may serve as a potent indicator for the effectiveness of ATRA treatment in osteosarcoma. Interestingly, E2F1 is found to downregulate retinoic acid receptor α (RARα), a key factor determines the effectiveness of ATRA. E2F1 specifically binds to RARα and promotes its ubiquitination-mediated degradation; as a consequence, RARα-mediated differentiation is inhibited in osteosarcoma. Therefore, our studies present E2F1 as a potent biomarker, as well as a therapeutic target for ATRA-based differentiation therapeutics, and raise the hope of using differentiation-based approaches for osteosarcoma patients.  相似文献   

3.
Bone marrow‐derived mesenchymal stem cells (BMMSCs) exhibit degenerative changes, including imbalanced differentiation and reduced proliferation during aging, that contribute to age‐related bone loss. We demonstrate here that autophagy is significantly reduced in aged BMMSCs compared with young BMMSCs. The autophagy inhibitor 3‐methyladenine (3‐MA) could turn young BMMSCs into a relatively aged state by reducing their osteogenic differentiation and proliferation capacity and enhancing their adipogenic differentiation capacity. Accordingly, the autophagy activator rapamycin could restore the biological properties of aged BMMSCs by increasing osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation capacity. Possible underlying mechanisms were explored, and the analysis revealed that autophagy could affect reactive oxygen species and p53 levels, thus regulating biological properties of BMMSCs. In an in vivo study, we found that activation of autophagy restored bone loss in aged mice. In conclusion, our results suggest that autophagy plays a pivotal role in the aging of BMMSCs, and activation of autophagy could partially reverse this aging and may represent a potential therapeutic avenue to clinically treat age‐related bone loss.  相似文献   

4.
There are disparate observations on central and peripheral effects of leptin, but several studies consistently support its role as a link between fat and bone. Bone marrow stroma contains mesenchymal stem cells (MSCs), which differentiate into osteoblasts and adipocytes, among others. In this study we assessed the expression of leptin receptors protein in MSCs from control and osteoporotic postmenopausal donors and their change during osteogenic and adipogenic differentiation. Also, we assessed the effects of leptin on osteogenic and adipogenic differentiation of these cells. We demonstrated high affinity leptin binding (KD = 0.36 +/- 0.02 nM) in both types of cells. Binding was very low under basal, but increased significantly (2-3 times) through osteogenic and adipogenic differentiation. Osteoporotic MSCs showed lower leptin binding capacity than control cells at an early osteogenic and adipogenic differentiation time, which could restrict cell sensitivity to the protective action of leptin. In this regard, we observed that leptin significantly inhibited adipocyte differentiation in control but not in osteoporotic MSCs, while it exerted a low stimulatory effect on calcium deposition (10%-20%) in both types of MSCs cells. In summary, we report the presence of high affinity leptin receptors on control and osteoporotic MSCs, which were modified distinctly by osteogenic and adipogenic stimulation and a direct and distinct effect of leptin on both type of cells.  相似文献   

5.
Bone morphogenetic protein-6 (BMP-6) is a potent inducer of osteogenic differentiation and its expression is stimulated by 17beta-estradiol. The existence of a regulatory loop between sex steroids and BMP-6 is therefore reasonable to hypothesize. Here we determined whether the sex steroids 17beta-estradiol and dihydrotestosterone, and the phytoestrogen resveratrol can modulate BMP-6-induced alkaline phosphatase activity and osteocalcin expression. Mesenchymal cells of murine (osteoblastic MC3T3-E1 cells, preadipogenic ST2 cells, prechondrogenic ATDC5 cell) and human origin (osteosarcoma SaOS and HOS cells, primary bone marrow stromal cells) were cultured in the presence of recombinant BMP-6 under serum-free conditions. BMP-6 dose-, and time-dependently increased alkaline phosphatase activity in murine cell lines, but not in human cells. Osteocalcin expression was also increased upon stimulation with BMP-6. The presence of 17beta-estradiol, dihydrotestosterone, and resveratrol had no effect on BMP-6-induced alkaline phosphatase activity and osteocalcin expression. These data suggest that osteogenic differentiation in response to BMP-6 occurs independent of steroid hormones and resveratrol in mesenchymal cells that express basal receptor levels.  相似文献   

6.
Ameloblastin, the most abundant nonamelogenin enamel matrix protein, plays a role in ameloblast differentiation. Here, we found that ameloblastin was expressed in osteosarcoma cells; to explore the potential functions of ameloblastin in osteoblasts, we investigated whether this protein is involved in osteogenic differentiation and bone formation on the premise that CD63, a member of the transmembrane-4 glycoprotein superfamily, interacts with integrins in the presence of ameloblastin. Ameloblastin bound to CD63 and promoted CD63 binding to integrin β1. The interaction between CD63 and integrin β1 induced Src kinase inactivation via the binding of CD63 to Src. The reduction of Src activity and osteogenic differentiation mediated by ameloblastin were abrogated by treatment with anti-CD63 antibody and overexpression of constitutively active Src, respectively. Therefore, our results suggest that ameloblastin is expressed in osteoblasts and functions as a promoting factor for osteogenic differentiation via a novel pathway through the interaction between CD63 and integrin β1.  相似文献   

7.
8.
FK506 enhanced osteoblastic differentiation in mesenchymal cells.   总被引:3,自引:0,他引:3  
Bone morphogenetic protein (BMP) is a bone-derived growth factor capable of promoting the differentiation of mesenchymal cells into osteogenic lineage pathways. Recently, immunosuppressants were reported to cause a moderate increase in osteoblastic differentiation in a rat osteoblast-like osteosarcoma cell line. If immunosuppressants can induce osteoblastic differentiation, it will be useful for bone tissue transplantation. We assessed the effect of immunosuppressants with or without BMP-4 on inducing osteoblastic differentiation in osteoblast-like and other mesenchymal cells. FK506, an immunosuppressant often used clinically, induced a dose- and time-dependent increase in alkaline phosphatase (ALP) activity, one of the markers of osteoblast differentiation, in cells derived from mesenchyma. In the presence of BMP-4, ALP activity, mRNA levels of ALP and osteocalcin increased. FK506 was found to not only stimulate osteoblastic differentiation, but also to enhance BMP-4 induced osteoblastic differentiation. These results suggest that FK506 promotes differentiation of osteoblastic cells.  相似文献   

9.
10.
Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knockdowned bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone meta-bolism.  相似文献   

11.
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs) were examined by MTT assay, fluorescence activated cell sorter (FACS) analysis, real-time quantitative PCR (RT-PCR) analysis, alkaline phosphatase (ALP) activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA). Moreover, whether mitogen-activated protein kinase (MAPK) signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK) and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways.  相似文献   

12.
Zheng Q  Huang G  Yang J  Xu Y  Guo C  Xi Y  Pan Z  Wang J 《Biological chemistry》2007,388(7):755-763
Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.  相似文献   

13.
Osteosarcoma is the most frequent, nonhematopoietic, primary malignant tumor of bone. Histopathologically, osteosarcoma is characterized by complex mixtures of different cell types with bone formation. The role of environmental factors in the formation of such a complicated tissue structure as osteosarcoma remains to be elucidated. Here, a newly established murine osteosarcoma model was used to clarify the roles of environmental factors such as fibroblast growth factor-2 (Fgf2) or leukemia-inhibitory factor (Lif) in the maintenance of osteosarcoma cells in an immature state. These factors were highly expressed in tumor environmental stromal cells, rather than in osteosarcoma cells, and they potently suppressed osteogenic differentiation of osteosarcoma cells in vitro and in vivo. Further investigation revealed that the hyperactivation of extracellular signal-regulated kinase (Erk)1/2 induced by these factors affected in the process of osteosarcoma differentiation. In addition, Fgf2 enhanced both proliferation and migratory activity of osteosarcoma cells and modulated the sensitivity of cells to an anticancer drug. The results of the present study suggest that the histology of osteosarcoma tumors which consist of immature tumor cells and pathologic bone formations could be generated dependent on the distribution of such environmental factors. The combined blockade of the signaling pathways of several growth factors, including Fgf2, might be useful in controlling the aggressiveness of osteosarcoma.  相似文献   

14.
Bone marrow stromal cells (BMSCs) have been well established as an ideal source of cell-based therapy for bone tissue engineering applications. Boron (B) is a notable trace element in humans; so far, the effects of boron on the osteogenic differentiation of BMSCs have not been reported. The aim of this study was to evaluate the effects of boron (0, 1, 10,100, and 1,000?ng/ml) on osteogenic differentiation of human BMSCs. In this study, BMSCs proliferation was analyzed by cell counting kit-8 (CCK8) assay, and cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity assay, Von Kossa staining, and real-time PCR. The results indicated that the proliferation of BMSCs was no different from the control group when added with B at the concentration of 1, 10, and 100?ng/ml respectively (P?>?0.05); in contrast, 1,000?ng/ml B inhibited the proliferation of BMSCs at days?4, 7, and 14 (P?相似文献   

15.
16.
Bone tissue engineering using human mesenchymal stem cells (hMSCs) is a multidisciplinary field that aims to treat patients with trauma, spinal fusion and large bone defects. Cell-based bone tissue engineering encompasses the isolation of multipotent hMSCs from the bone marrow of the patient, in vitro expansion and seeding onto porous scaffold materials. In vitro pre-differentiation of hMSCs into the osteogenic lineage augments their in vivo bone forming capacity. Differentiation of hMSCs into bone forming osteoblasts is a multi-step process regulated by various molecular signaling pathways, which warrants a thorough understanding of these signaling cues for the efficient use of hMSCs in bone tissue engineering. Recently, there has been a surge of knowledge on the molecular cues regulating osteogenic differentiation but extrapolation to hMSC differentiation is not guaranteed, because of species- and cell-type specificity. In this review, we describe a number of key osteogenic signaling pathways, which directly or indirectly regulate osteogenic differentiation of hMSCs. We will discuss how and to what extent the process is different from that in other cell types with special emphasis on applications in bone tissue engineering.  相似文献   

17.
18.
19.
Selective targeting of transfected mesenchymal stem cells (MSCs) carrying specific antioncogenes to the tumor was suggested as a treatment option. Bone morphogenetic protein-2 (BMP2) was shown to inhibit the proliferation and aggressiveness of osteosarcoma (OS) cells. Here, we aimed to assess the homing efficiency of intraperitoneally administered hMSCs transfected with BMP2 to the tumoral site and their effects on OS using an orthotopic xenograft murine model. Orthotopic xenograft murine model of OS in six-week-old female NOD/SCID mice using 143B cells was established. hMSCs transfected with BMP2 (BMP2+hMSC) were used. In vivo experiments performed on four groups of mice that received no treatment, or intraperitoneally administered BMP2, hMSCs, and BMP2+hMSCs. Histopathological and immunohistochemical studies were used to evaluate the pathological identification and to assess the dimensions and necrotic foci of the tumor, the features of lung metastases, and immunostaining against p27, Ki-67, and caspase-3 antibodies. The osteogenic differentiation markers BMP2, BMP4, COL1A1, OPN, OCN and PF4 evaluated using RT-PCR. The tumor dimensions in the hMSCs group were significantly higher than those of the remaining groups (p < 0.01). The number of metastatic foci in the BMP2+hMSCs group was significantly lower than those of the other groups (p < 0.01). The current results showed that the intraperitoneal route could be efficiently used for targeting hMSCs to the tumoral tissues for effective BMP2 delivery. In this study, the effects of BMP2 transfected hMSCs on human OS and metastasis were promising for achieving osteogenic differentiation and reduced metastatic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号