首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion."  相似文献   

2.
We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population approximately 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history of population bottlenecks and suggest that they began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian populations.  相似文献   

3.
Butana and Kenana breeds from Sudan are part of the East African zebu Bos indicus type of cattle. Unlike other indigenous zebu cattle in Africa, they are unique due to their reputation for high milk production and are regarded as dairy cattle, the only ones of their kind on the African continent. In this study, we sequenced the complete mitochondrial DNA (mtDNA) D‐loop of 70 animals to understand the maternal genetic variation, demographic profiles and history of the two breeds in relation to the history of cattle pastoralism on the African continent. Only taurine mtDNA sequences were identified. We found very high mtDNA diversity but low level of maternal genetic structure within and between the two breeds. Bayesian coalescent‐based analysis revealed different historical and demographic profiles for the two breeds, with an earlier population expansion in the Butana vis a vis the Kenana. The maternal ancestral populations of the two breeds may have diverged prior to their introduction into the African continent, with first the arrival of the ancestral Butana population. We also reveal distinct demographic history between the two breeds with the Butana showing a decline in its effective population size (Ne) in the recent past ~590 years. Our results provide new insights on the early history of cattle pastoralism in Sudan indicative of a large ancient effective population size.  相似文献   

4.
The Goitered Gazelle, Gazella subgutturosa, is the most widespread gazelle species in the Middle East and central Asia inhabiting desert and semi-desert habitats. Today it is threatened and its geographic range and population size have experienced significant decline in the last decades. In Iran, the remnant populations are confined to fragmented habitats. We aimed to characterise genetic diversity and phylogenetic status of the populations of Goitered Gazelle in Central Iran and to evaluate the potential effect of a historic population bottleneck on the genetic variation of today’s population. We used noninvasive sampling to uncover structure and level of genetic variation in a fragment of the cytochrome-b gene from 170 samples. Genealogical analyses were performed using HKY+I model and phylogenetic trees reconstructed using Bayesian inference and maximum likelihood. We found extremely low levels of genetic variation, with altogether only five haplotypes in samples from different populations. Overall haplotype diversity was 0.081 and nucleotide diversity 0.0003. The mean observed mismatch between any two sequences was 0.093 with the largest peak for small numbers. The mismatch distribution fit the model of population expansion and suggested that gazelles had experienced a sudden expansion. An unrooted median-joining network analysis of mtDNA haplotypes showed a star-like structure which few mutations steps separating the haplotypes from other regions. Our findings strengthen the urgency of preserving the species’ genetic diversity to prevent local extinction.  相似文献   

5.
Recent controversies surrounding models of modern human origins have focused on among-group variation, particularly the reconstruction of phylogenetic trees from mitochondrial DNA (mtDNA) and, the dating of population divergence. Problems in tree estimation have been seen as weakening the case for a replacement model and favoring a multiregional evolution model. There has been less discussion of patterns of within-group variation, although the mtDNA evidence has consistently shown the greatest diversity within African populations. Problems of interpretation abound given the numerous factors that can influence within-group variation, including the possibility of earlier divergence, differences in population size, patterns of population expansion, and variation in migration rates. We present a model of within-group phenotypic variation and apply it to a large set of craniometric data representing major Old World geographic regions (57 measurements for 1,159 cases in four regions: Europe, Sub-Saharan Africa, Australasia, and the Far East). The model predicts a linear relationship between variation within populations (the average within-group variance) and variation between populations (the genetic distance of populations to pooled phenotypic means). On a global level this relationship should hold if the long-term effective population sizes of each region are correctly specified. Other potential effects on withingroup variation are accounted for by the model. Comparison of observed and expected variances under the assumption of equal effective sizes for four regions indicates significantly greater within-group variation in Africa and significantly less within-group variation in Europe. These results suggest that the long-term effective population size was greatest in Africa. Closer examination of the model suggests that the long-term African effective size was roughly three times that of any other geographic region. Using these estimates of relative population size, we present a method for analyzing ancient population structure, which provides estimates of ancient migration. This method allows us to reconstruct migration history between geographic regions after adjustment for the effect of genetic drift on interpopulational distances. Our results show a clear isolation of Africa from other regions. We then present a method that allows direct estimation of the ancient migration matrix, thus providing us with information on the actual extent of interregional migration. These methods also provide estimates of time frames necessary to reach genetic equilibrium. The ultimate goal is extracting as much information from present-day patterns of human variation relevannt to issues of human origins. Our results are in agreement with mismatch distribution analysis of mtDNA, and they support a “weak Garden o Eden” model. In this model, modern-day variation can be explained by divergence from an initial source (perhaps Africa) into a number o small isolated populations, followed by later population expansion throughout our species. The major populationn expansions of Homo sapiens during and after the late Pleistocene have had the effect of “freezing” ancient patterns of population structure. While this is not the only possible scenario, we do note the close agreement with ecent analyses of mtDNA mismatch distibutions. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Past population size can be estimated from modern genetic diversity using coalescent theory. Estimates of ancestral human population dynamics in sub-Saharan Africa can tell us about the timing and nature of our first steps towards colonizing the globe. Here, we combine Bayesian coalescent inference with a dataset of 224 complete human mitochondrial DNA (mtDNA) sequences to estimate effective population size through time for each of the four major African mtDNA haplogroups (L0-L3). We find evidence of three distinct demographic histories underlying the four haplogroups. Haplogroups L0 and L1 both show slow, steady exponential growth from 156 to 213kyr ago. By contrast, haplogroups L2 and L3 show evidence of substantial growth beginning 12-20 and 61-86kyr ago, respectively. These later expansions may be associated with contemporaneous environmental and/or cultural changes. The timing of the L3 expansion--8-12kyr prior to the emergence of the first non-African mtDNA lineages--together with high L3 diversity in eastern Africa, strongly supports the proposal that the human exodus from Africa and subsequent colonization of the globe was prefaced by a major expansion within Africa, perhaps driven by some form of cultural innovation.  相似文献   

7.
Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping‐by‐sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000–350,000 years ago, corresponding to around the Pliocene–Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.  相似文献   

8.
The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.  相似文献   

9.
The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ∼500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.  相似文献   

10.

Background  

Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale). We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations.  相似文献   

11.
Despite its key location for population movements out of and back into Africa, Yemen has not yet been sampled on a regional level for an investigation of sub-Saharan, West Eurasian, and South Asian genetic contributions. In this study, we present mitochondrial DNA (mtDNA) data for regionally distinct Yemeni populations that reveal different distributions of mtDNA lineages. An extensive database of mtDNA sequences from North and East African, Middle Eastern and Indian populations was analyzed to provide a context for the regional Yemeni mtDNA datasets. The groups of western Yemen appear to be most closely related to Middle Eastern and North African populations, while the eastern Yemeni population from Hadramawt is most closely related to East Africa. Furthermore, haplotype matches with Africa are almost exclusively confined to West Eurasian R0a haplogroup in southwestern Yemen, although more sub-Saharan L-type matches appear in more northern Yemeni populations. In fact, Yemeni populations have the highest frequency of R0a haplotypes detected to date, thus Yemen or southern Arabia may be the site of the initial expansion of this haplogroup. Whereas two variants of the sub-Saharan haplogroup M1 were detected only in southwestern Yemen close to the Bab el-Mandeb Strait, different non-African M haplotypes were detected at low frequencies (approximately 2%) in western parts of the country and at a higher frequency (7.5%) in the Hadramawt. We conclude that the Yemeni gene pool is highly stratified both regionally and temporally and that it has received West Eurasian, Northeast African, and South Asian gene flow.  相似文献   

12.
A history of Pleistocene population expansion has been inferred from the frequency spectrum of polymorphism in the mitochondrial DNA (mtDNA) of many human populations. Similar patterns are not typically observed for autosomal and X-linked loci. One explanation for this discrepancy is a recent population bottleneck, with different rates of recovery for haploid and autosomal loci as a result of their different effective population sizes. This hypothesis predicts that mitochondrial and Y chromosomal DNA will show a similar skew in the frequency spectrum in populations that have experienced a recent increase in effective population size. We test this hypothesis by resequencing 6.6 kb of noncoding Y chromosomal DNA and 780 basepairs of the mtDNA cytochrome c oxidase subunit III (COIII) gene in 172 males from 5 African populations. Four tests of population expansion are employed for each locus in each population: Fu's Fs statistic, the R(2) statistic, coalescent simulations, and the mismatch distribution. Consistent with previous results, patterns of mtDNA polymorphism better fit a model of constant population size for food-gathering populations and a model of population expansion for food-producing populations. In contrast, none of the tests reveal evidence of Y chromosome growth for either food-gatherers or food-producers. The distinct mtDNA and Y chromosome polymorphism patterns most likely reflect sex-biased demographic processes in the recent history of African populations. We hypothesize that males experienced smaller effective population sizes and/or lower rates of migration during the Bantu expansion, which occurred over the last 5,000 years.  相似文献   

13.
A low level of genetic variation in mammalian populations where the census population size is relatively large has been attributed to various factors, such as a naturally small effective population size, historical bottlenecks and social behaviour. The killer whale (Orcinus orca) is an abundant, highly social species with reduced genetic variation. We find no consistent geographical pattern of global diversity and no mtDNA variation within some regional populations. The regional lack of variation is likely to be due to the strict matrilineal expansion of local populations. The worldwide pattern and paucity of diversity may indicate a historical bottleneck as an additional factor.  相似文献   

14.
We study data on variation in 52 worldwide populations at 377 autosomal short tandem repeat loci, to infer a demographic history of human populations. Variation at di-, tri-, and tetranucleotide repeat loci is distributed differently, although each class of markers exhibits a decrease of within-population genetic variation in the following order: sub-Saharan Africa, Eurasia, East Asia, Oceania, and America. There is a similar decrease in the frequency of private alleles. With multidimensional scaling, populations belonging to the same major geographic region cluster together, and some regions permit a finer resolution of populations. When a stepwise mutation model is used, a population tree based on TD estimates of divergence time suggests that the branches leading to the present sub-Saharan African populations of hunter-gatherers were the first to diverge from a common ancestral population (approximately 71-142 thousand years ago). The branches corresponding to sub-Saharan African farming populations and those that left Africa diverge next, with subsequent splits of branches for Eurasia, Oceania, East Asia, and America. African hunter-gatherer populations and populations of Oceania and America exhibit no statistically significant signature of growth. The features of population subdivision and growth are discussed in the context of the ancient expansion of modern humans.  相似文献   

15.
Africa is the homeland of humankind and it is known to harbour the highest levels of human genetic diversity. However, many continental regions, especially in the sub-Saharan side, still remain largely uncharacterized (i.e. southwest and central Africa). Here, we examine the mitochondrial DNA (mtDNA) variation in a sample from Angola. The two mtDNA hypervariable segments as well as the 9-bp tandem repeat on the COII/tRNAlys intergenic region have allowed us to allocate mtDNAs to common African haplogroups. Angola lies in the southern end of the putative western branch of the Bantu expansion, where it met the local Khoisan populations. Angolan mtDNA lineages show basically a Bantu substrate with no traces of Khoisan lineages. Roughly, more than half of the southwestern mtDNA pool can be assigned to west Africa, ~25% to central Africa and a significant 16% to east Africa, which points to the western gene pool having contributed most to the mtDNA lineages in Angola. We have also detected signals of extensive gene flow from southeast Africa. Our results suggest that eastern and western Bantu expansion routes were not independent from each other, and were connected south of the rainforest and along the southern African savannah. In agreement with historical documentation, the analysis also showed that the Angola mtDNA genetic pool shows affinities with the African lineages from Brazil, the main American destination of the slaves from Angola, although not all lineages in Brazil can be accounted for by the Angolan mtDNA pool.  相似文献   

16.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

17.
For the past seven years or so, much discussion and controversy in the field of human evolution has revolved around the application and interpretation of studies of human mitochondrial DNA variation, particularly the hypothesis that all mtDNA types in contemporary populations can be traced back to a single African ancestor who lived about 200,000 years ago. In this review I describe the evidence that led to this hypothesis, subsequent work, and where things stand now, particularly with respect to recent criticisms concerning the adequacy of phylogenetic analyses of the mtDNA data. I also describe a new method of analyzing mtDNA data that suggests that all human populations underwent a dramatic expansion some 40,000 years ago, possibly in association with revolutionary advances in human behavior, as well as an important implication of population expansions for mtDNA disease studies.  相似文献   

18.
Contemporary hunter–gatherer groups are often thought to serve as models of an ancient lifestyle that was typical of human populations prior to the development of agriculture. Patterns of genetic variation in hunter–gatherer groups such as the !Kung and African Pygmies are consistent with this view, as they exhibit low genetic diversity coupled with high frequencies of divergent mtDNA types not found in surrounding agricultural groups, suggesting long-term isolation and small population sizes. We report here genetic evidence concerning the origins of the Mlabri, an enigmatic hunter–gatherer group from northern Thailand. The Mlabri have no mtDNA diversity, and the genetic diversity at Y-chromosome and autosomal loci are also extraordinarily reduced in the Mlabri. Genetic, linguistic, and cultural data all suggest that the Mlabri were recently founded, 500–800 y ago, from a very small number of individuals. Moreover, the Mlabri appear to have originated from an agricultural group and then adopted a hunting–gathering subsistence mode. This example of cultural reversion from agriculture to a hunting–gathering lifestyle indicates that contemporary hunter–gatherer groups do not necessarily reflect a pre-agricultural lifestyle.  相似文献   

19.
Contemporary hunter–gatherer groups are often thought to serve as models of an ancient lifestyle that was typical of human populations prior to the development of agriculture. Patterns of genetic variation in hunter–gatherer groups such as the !Kung and African Pygmies are consistent with this view, as they exhibit low genetic diversity coupled with high frequencies of divergent mtDNA types not found in surrounding agricultural groups, suggesting long-term isolation and small population sizes. We report here genetic evidence concerning the origins of the Mlabri, an enigmatic hunter–gatherer group from northern Thailand. The Mlabri have no mtDNA diversity, and the genetic diversity at Y-chromosome and autosomal loci are also extraordinarily reduced in the Mlabri. Genetic, linguistic, and cultural data all suggest that the Mlabri were recently founded, 500–800 y ago, from a very small number of individuals. Moreover, the Mlabri appear to have originated from an agricultural group and then adopted a hunting–gathering subsistence mode. This example of cultural reversion from agriculture to a hunting–gathering lifestyle indicates that contemporary hunter–gatherer groups do not necessarily reflect a pre-agricultural lifestyle.  相似文献   

20.
Thorough assessment of modern genetic diversity and interpopulation affinities within the African continent is essential for understanding the processes that have been at work during the course of worldwide human evolution. Regardless of whether autosomal, Y-chromosome, or mtDNA markers are used, allele- or haplotype-frequency data from African populations are necessary in setting the framework for the construction of global population phylogenies. In the present study we analyze genetic differentiation and population structure in a data set of nine African populations using 12 polymorphic Alu insertions (PAls). Furthermore, to place our findings within a global context, we also examined an equal number of non-African groups. Frequency data from 456 individuals presented for the first time in this work plus additional data obtained from the literature indicate an overall pattern of higher intrapopulation diversity in sub-Saharan populations than in northern Africa, a prominent differentiation between these two locations, an appreciably high degree of transcontinental admixture in Egypt, and significant discontinuity between Morocco and the Iberian peninsula. Moreover, the topologies of our phylogenetic analyses suggest that out of the studied sub-Saharan groups, the southern Bantu population of Sotho/ Tswana presents the highest level of antiquity, perhaps as a result of ancestral or acquired Khoisan genetic signals. Close affinities of eastern sub-Saharan populations with Egypt in the phylogenetic trees may indicate the existence of gene flow along the Nile River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号