首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niimura Y  Nei M 《PloS one》2007,2(8):e708
Odor perception in mammals is mediated by a large multigene family of olfactory receptor (OR) genes. The number of OR genes varies extensively among different species of mammals, and most species have a substantial number of pseudogenes. To gain some insight into the evolutionary dynamics of mammalian OR genes, we identified the entire set of OR genes in platypuses, opossums, cows, dogs, rats, and macaques and studied the evolutionary change of the genes together with those of humans and mice. We found that platypuses and primates have <400 functional OR genes while the other species have 800-1,200 functional OR genes. We then estimated the numbers of gains and losses of OR genes for each branch of the phylogenetic tree of mammals. This analysis showed that (i) gene expansion occurred in the placental lineage each time after it diverged from monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order-specific manner, making the gene repertoires highly variable among different orders. It appears that the number of OR genes is determined primarily by the functional requirement for each species, but once the number reaches the required level, it fluctuates by random duplication and deletion of genes. This fluctuation seems to have been aided by the stochastic nature of OR gene expression.  相似文献   

2.
Olfaction is essential for the survival of animals. Diverse odor molecules in the environment are detected by the olfactory receptors (ORs) in the olfactory epithelium of the nasal cavity. There are ~400 and ~1,000 OR genes in the human and mouse genomes, respectively, forming the largest multigene family in mammals. The relationships between ORs and odorants are multiple-to-multiple, which allows for discriminating almost unlimited number of different odorants by a combination of ORs. However, the OR-ligand relationships are still largely unknown, and predicting the quality of odor from its molecular structure is unsuccessful.Extensive bioinformatic analyses using the whole genomes of various organisms revealed a great variation in number of OR genes among species, reflecting the diversity of their living environments. For example, higher primates equipped with a well-developed vision system and dolphins that are secondarily adapted to the aquatic life have considerably smaller numbers of OR genes than most of other mammals do. OR genes are characterized by extremely frequent gene duplications and losses. The OR gene repertories are also diverse among human individuals, explaining the diversity of odor perception such as the specific anosmia.OR genes are present in all vertebrates. The number of OR genes is smaller in teleost fishes than in mammals, while the diversity is higher in the former than the latter. Because the genome of amphioxus, the most basal chordate species, harbors vertebrate-like OR genes, the origin of OR genes can be traced back to the common ancestor of the phylum Chordata.  相似文献   

3.
The number of olfactory receptor genes (ORs), which are responsible for detecting diverse odor molecules varies extensively among mammals as a result of frequent gene gains and losses that contribute to olfactory specialization. However, how OR expansions/contractions in fish are influenced by habitat and feeding habit and which OR subfamilies are important in each ecological niche is unknown. Here, we report a major OR expansion in a freshwater herbivorous fish, Megalobrama amblycephala, using a highly contiguous, chromosome-level assembly. We evaluate the possible contribution of OR expansion to habitat and feeding specialization by comparing the OR repertoire in 28 phylogenetically and ecologically diverse teleosts. In total, we analyzed > 4,000 ORs including 3,253 intact, 122 truncated, and 913 pseudogenes. The number of intact ORs is highly variable ranging from 20 to 279. We estimate that the most recent common ancestor of Osteichthyes had 62 intact ORs, which declined in most lineages except the freshwater Otophysa clade that has a substantial expansion in subfamily β and ε ORs. Across teleosts, we found a strong association between duplications of β and ε ORs and freshwater habitat. Nearly, all ORs were expressed in the olfactory epithelium (OE) in three tested fish species. Specifically, all the expanded β and ε ORs were highly expressed in OE of M. amblycephala. Together, we provide molecular and functional evidence for how OR repertoires in fish have undergone gain and loss with respect to ecological factors and highlight the role of β and ε OR in freshwater adaptation.  相似文献   

4.

Background  

A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system.  相似文献   

5.
In species representing different levels of vertebrate evolution, olfactory receptor genes have been identified by molecular cloning techniques. Comparing the deduced amino-acid sequences revealed that the olfactory receptor gene family of Rana esculenta resembles that of Xenopus laevis, indicating that amphibians in general may comprise two classes of olfactory receptors. Whereas teleost fish, including the goldfish Carassius auratus, possess only class I receptors, the `living fossil' Latimeria chalumnae is endowed with both receptor classes; interestingly, most of the class II genes turned out to be pseudogenes. Exploring receptor genes in aquatic mammals led to the discovery of a large array of only class II receptor genes in the dolphin Stenella Coeruleoalba; however, all of these genes were found to be non-functional pseudogenes. These results support the notion that class I receptors may be specialized for detecting water-soluble odorants and class II receptors for recognizing volatile odorants. Comparing the structural features of both receptor classes from various species revealed that they differ mainly in their extracellular loop 3, which may contribute to ligand specificity. Comparing the number and diversity of olfactory receptor genes in different species provides insight into the origin and the evolution of this unique gene family. Accepted: 29 July 1998  相似文献   

6.
《遗传学报》2023,50(1):38-45
Camelids are the only mammals that can produce functional heavy-chain antibodies (HCAbs). Although HCAbs were discovered over 30 years ago, the antibody gene repertoire of Bactrian camels remains largely underexplored. To characterize the diversity of variable genes of HCAbs (VHHs), germline and rearranged VHH repertoires are constructed. Phylogenetics analysis shows that all camelid VHH genes are derived from a common ancestor and the nucleotide diversity of VHHs is similar across all camelid species. While species-specific hallmark sites are identified, the non-canonical cysteines specific to VHHs are distinct in Bactrian camels and dromedaries compared with alpacas. Though low divergence at the germline repertoire between wild and domestic Bactrian camels, higher expression of VHHs is observed in some wild Bactrian camels than that of domestic ones. This study not only adds our understanding of VHH repertoire diversity across camelids, but also provides useful resources for HCAb engineering.  相似文献   

7.

Background

To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes.

Results

We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many “edge genes” corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families.

Conclusions

Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-586) contains supplementary material, which is available to authorized users.  相似文献   

8.
《Fungal biology》2014,118(11):896-909
Lichen-forming fungi synthesize a diversity of polyketides, but only a few non-reducing polyketide synthase (PKS) genes from a lichen-forming fungus have been linked with a specific polyketide. While it is a challenge to link the large number of PKS paralogs in fungi with specific products, it might be expected that the PKS paralogs from closely related species would be similar because of recent evolutionary divergence. The objectives of this study were to reconstruct a PKS gene phylogeny of the Cladonia chlorophaea species complex based on the ketosynthase domain, a species phylogeny of the complex, and to explore the presence of PKS gene paralogs among members of the species complex. DNA was isolated from 51 individuals of C. chlorophaea and allies to screen for the presence of 13 PKS paralogs. A 128 sequence PKS gene phylogeny using deduced amino acid sequences estimated from the 13 PKS paralogs and sequences subjected to BLASTx comparisons showed losses of each of two PKS domains (reducing and methylation). This research provided insight into the evolution of PKS genes in the C. chlorophaea group, species evolution in the group, and it identified potential directions for further investigation of polyketide synthesis in the C. chlorophaea species complex.  相似文献   

9.

Background  

In vertebrates, the molecular basis of the sense of smell is encoded by members of a large gene family, namely olfactory receptor (OR) genes. Both the total number of OR genes and the proportion of intact OR genes in a genome may indicate the importance of the sense of smell for an animal. There is behavioral, physiological, and anatomical evidence that some bird species, in particular nocturnal birds, have a well developed sense of smell. Therefore, we hypothesized that nocturnal birds with good olfactory abilities have evolved (i) more OR genes and (ii) more intact OR genes than closely related and presumably less 'olfaction-dependent' day-active avian taxa.  相似文献   

10.

Background

The extraordinary diversity characterizing the antibody repertoire is generated by both evolution and lymphocyte development. Much of this diversity is due to the existence of immunoglobulin (Ig) variable region gene segment libraries, which were diversified during evolution and, in higher vertebrates, are used in generating the combinatorial diversity of antibody genes. The aim of the present study was to address the following questions: What evolutionary parameters affect the size and structure of gene libraries? Are the number of genes in libraries of contemporary species, and the corresponding gene locus structure, a random result of evolutionary history, or have these properties been optimized with respect to individual or population fitness? If a larger number of genes or different genome structures do not increase the fitness, then the current structure is probably optimized.

Results

We used a simulation of variable region gene library evolution. We measured the effect of different parameters on gene library size and diversity, and the corresponding fitness. We found compensating relationships between parameters, which optimized Ig library size and diversity.

Conclusions

We conclude that contemporary species' Ig libraries have been optimized by evolution in terms of Ig sequence lengths, the number and diversity of Ig genes, and antibody-antigen affinities.  相似文献   

11.
12.
The canine olfactory subgenome   总被引:10,自引:0,他引:10  
We identified 971 olfactory receptor (OR) genes in the dog genome, estimated to constitute approximately 80% of the canine OR repertoire. This was achieved by directed genomic DNA cloning of olfactory sequence tags as well as by mining the Celera canine genome sequences. The dog OR subgenome is estimated to have 12% pseudogenes, suggesting a functional repertoire similar to that of mouse and considerably larger than for humans. No novel OR families were discovered, but as many as 34 gene subfamilies were unique to the dog. "Fish-like" Class I ancient ORs constituted 18% of the repertoire, significantly more than in human and mouse. A set of 122 dog-human-mouse ortholog triplets was identified, with a relatively high fraction of Class I ORs. The elucidation of a large portion of the canine olfactory receptor gene superfamily, with some dog-specific attributes, may help us understand the unique chemosensory capacities of this species.  相似文献   

13.
Host plant shifts by phytophagous insects play a key role in insect evolution and plant ecology. Such shifts often involve major behavioral changes as the insects must acquire an attraction and/or lose the repulsion to the new host plant's odor and taste. The evolution of chemotactic behavior may be due, in part, to gene expression changes in the peripheral sensory system. To test this hypothesis, we compared gene expression in the olfactory organs of Drosophila sechellia, a narrow ecological specialist that feeds on the fruit of Morinda citrifolia, with its close relatives Drosophila simulans and Drosophila melanogaster, which feed on a wide variety of decaying plant matter. Using whole-genome microarrays and quantitative polymerase chain reaction, we surveyed the entire repertoire of Drosophila odorant receptors (ORs) and odorant-binding proteins (OBPs) expressed in the antennae. We found that the evolution of OR and OBP expression was accelerated in D. sechellia compared both with the genome average in that species and with the rate of OR and OBP evolution in the other species. However, some of the gene expression changes that correlate with D. sechellia's increased sensitivity to Morinda odorants may predate its divergence from D. simulans. Interspecific divergence of olfactory gene expression cannot be fully explained by changes in the relative abundance of different sensilla as some ORs and OBPs have evolved independently of other genes expressed in the same sensilla. A number of OR and OBP genes are upregulated in D. sechellia compared with its generalist relatives. These genes include Or22a, which likely responds to a key odorant of M. citrifolia, and several genes that are yet to be characterized in detail. Increased expression of these genes in D. sechellia may have contributed to the evolution of its unique chemotactic behavior.  相似文献   

14.
Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be in the extracellular and transmembrane regions of the newly duplicated genes, which might be associated with the evolution of the new pheromone receptors.  相似文献   

15.
Bitter taste perception is important for vertebrates to select food and avoid toxic substances. A large number of Tas2r genes have been identified from vertebrate species previously; however, few studies have been conducted on the Tas2r genes of Ovalentaria species that have various dietary niches and are widely distributed, ranging from the sea to freshwater environments. Several genomes of Ovalentaria species have been released recently, allowing us to study Tas2r genes in these fishes. Thus, we explored the genomes of these fishes and identified 34 Tas2r genes in 21 species, including 27 intact Tas2r genes and seven pseudogenes. The results suggest that Ovalentaria species generally carry a small repertoire of Tas2r genes. To determine the phylogenetic relationship of Tas2r genes among 21 fishes, we constructed neighbor-joining (NJ) trees. The results showed that gene duplication may not occur in these fishes. Phylogenetic independent contrast (PIC) analysis showed that the fish Tas2r gene repertoire size was not positively correlated with diet, indicating that the food swallowing behavior might reduce the importance of bitter taste sense.  相似文献   

16.
17.
18.
Olfactory receptors (ORs), which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction ( approximately 55%) of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs), we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that approximately 50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used in future genetic association studies of olfactory inter-individual differences.  相似文献   

19.
Each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR) from a large repertoire of clustered OR genes. It has been hypothesized that OR gene regulation may involve stochastic DNA rearrangement, which in lymphocytes requires the recombination activating genes, rag1 and rag2. We have recently demonstrated that rag1 is expressed in zebrafish OSNs. Here we report that rag2, the obligate partner for rag1 function, is also expressed in OSNs and that its expression pattern mimics that of rag1. The onset of rag1 and rag2 expression preceded that of known zebrafish ORs and the number of rag1-positive OSNs corresponded with the number expressing the olfactory cyclic nucleotide-gated cation channel, an OSN marker. Zebrafish OSNs are the first example of concurrent rag expression in a nonlymphoid tissue. The expression of rag1 and rag2 in OSNs adds to the list of similarities between the olfactory and immune systems that includes monoallelic and mutually exclusive gene expression.  相似文献   

20.

Background

TAARs (trace amine-associated receptors) are among the principal receptors expressed by the olfactory epithelium. We used the recent BROAD Institute release of the genome sequences of five representative fishes of the cichlid family to establish the complete TAAR repertoires of these species and to compare them with five other fish TAAR repertoires.

Results

The genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were analyzed by exhaustive TBLASTN searches with a set of published TAAR gene sequences used as positive bait. A second TBLASTN analysis was then performed on the candidate genes, with a set of non-TAAR class A GPCR (G protein-coupled receptors) used as negative bait. The resulting cichlid repertoire contained 44 complete TAAR genes from O. niloticus, 18 from P. nyererei, 23 from H. burtoni, 12 from N. brichardi and 20 from M. zebra, plus a number of pseudogenes, edge genes and fragments. A large proportion of these sequences (80%) consisted of two coding exons, separated in all but two cases by an intron in the interloop 1 coding sequence. We constructed phylogenetic trees. These trees indicated that TAARs constitute a distinct clade, well separated from ORs (olfactory receptors) and other class A GPCRs. Also these repertoires consist of several families and subfamilies, a number of which are common to fugu, tetraodon, stickleback and medaka. Like all other TAARs identified to date, cichlid TAARs have a characteristic two-dimensional structure and contain a number of amino-acid motifs or amino acids, such cysteine, in particular conserved positions.

Conclusions

Little is known about the functions of TAARs: in most cases their ligands have yet to be identified, partly because appropriate methods for such investigations have not been developed. Sequences analyses and comparisons of TAARs in several animal species, here fishes living in the same environment, should help reveal their roles and whether they are complementary to that of ORs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1478-4) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号