首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To respond to physical signals and endogenous hormones, plants use specific signal transduction pathways. We and others have previously shown that second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is used in abscisic acid (ABA) signaling, and that some mutants with altered Ins(1,4,5)P3 have altered responses to ABA. Specifically, mutants defective in the myo-inositol polyphosphate 5-phosphatases (5PTases) 1 and 2 genes that hydrolyze 5-phosphates from Ins(1,4,5)P3 and other PtdInsP and InsP substrates, have elevated Ins (1,4,5)P3, and are ABA-hypersensitive. Given the antagonistic relationship between ABA and gibberellic acid (GA), we tested the response of these same mutants to a GA synthesis inhibitor, paclobutrazol (PAC). We report here that 5ptase1, 5ptase2 and 5ptase11 mutants are hypersensitive to PAC, suggesting a relationship between elevated Ins(1,4,5)P3 and decreased GA signal transduction. These data provide insight into signaling cross-talk between ABA and GA pathways.Key words: inositol, phosphatidylinositol phosphate, paclobutrazol, gibberellic acid, inositol trisphosphate, paclobutrazol  相似文献   

2.
Metabolism of the putative messenger molecule d-myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] in plant cells has been studied using a soluble fraction from pea (Pisum sativum) roots as enzyme source and [5-32P]Ins(1,4,5)P3 and [2-3H]Ins(1,4,5)P3 as tracers. Ins(1,4,5)P3 was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol(4,5)bisphosphate [Ins(4,5)P2] whereas inositol(1,4)bisphosphate [Ins(1,4)P2] was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P4. Dephosphorylation of Ins(1,4,5)P3 to Ins(4,5)P2 was dependent on Ins(1,4,5)P3 concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P3 to Ins(4,5)P2 and Ins(1,4,5,X)P4 was inhibited by 55 micromolar Ca2+. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P3 and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.  相似文献   

3.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

4.
Summary We have examined the effects of various inositol polyphosphates, alone and in combination, on the Ca2+-activated K+ current in internally perfused, single mouse lacrimal acinar cells. We used the patch-clamp technique for whole-cell current recording with a set-up allowing exchange of the pipette solution during individual experiments so that control and test periods could be directly compared in individual cells. Inositol 1,4,5-trisphosphate (Ins 1,4,5 P3) (10–100 m) evoked a transient increase in the Ca2+-sensitive K+ current that was independent of the presence of Ca2+ in the external solution. The transient nature of the Ins 1,4,5 P3 effect was not due to rapid metabolic breakdown, as similar responses were obtained in the presence of 5mm 2,3-diphosphoglyceric acid, that blocks the hydrolysis of Ins 1,4,5 P3, as well as with the stable analoguedl-inositol 1,4,5-trisphosphorothioate (Ins 1,4,5 P(S)3) (100 m). Ins 1,3,4 P3 (50 m) had no effect, whereas 50 m Ins 2,4,5 P3 evoked responses similar to those obtained by 10 m Ins 1,4,5 P3. A sustained increase in Ca2+-dependent K+ current was only observed when inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5 P4) (10 m) was added to the Ins 1,4,5 P3 (10 m)-containing solution and this effect could be terminated by removal of external Ca2+. The effect of Ins 1,3,4,5 P4 was specifically dependent on the presence of Ins 1,4,5 P3 as it was not found when 10 m concentrations of Ins 1,3,4 P3 or Ins 2,4,5 P3 were used. Ins 2,4,5 P3 (but not Ins 1,3,4 P3) at the higher concentration of 50 m did, however, support the Ins 1,3,4,5 P4-evoked sustained current activation. Ins 1,3,4 P3 could not evoke sustained responses in combination with Ins 1,4,5 P3 excluding the possibility that the action of Ins 1,3,4,5 P4 could be mediated by its breakdown product Ins 1,3,4 P3. Ins 1,3,4,5 P4 also evoked a sustained response when added to an Ins 1,4,5 P(S)3-containing solution. Ins 1,3,4,5,6 P5 (50 m) did not evoke any effect when administered on top of Ins 1,4,5 P3. In the absence of external Ca2+, addition of Ins 1,3,4,5 P4 to an Ins 1,4,5 P3-containing internal solution evoked a second transient K+ current activation. Readmitting external Ca2+ in the continued presence internally of Ins 1,4,5 P3 and Ins 1,3,4,5 P4 made the response reappear. We conclude that both Ins 1,4,5 P3 and Ins 1,3,4,5 P4 play crucial and specific roles in controlling intracellular Ca2+ homeostasis.  相似文献   

5.
Abstract: Histamine stimulation of bovine adrenal medullary cells rapidly activated phospholipase C. [3H]Inositol 1,4,5-trisphosphate [[3H]Ins(1,4,5)P3] levels were transiently increased (200% of basal values between 1 and 5 s) before declining to a new steady-state level of ~140% of basal values. [3H]Inositol 1,4-bisphosphate [[3H]Ins(1,4)P2] content increased to a maximal and maintained level of 250% of basal values after 1 s, whereas levels of [3H]inositol 1,3,4-trisphosphate [[3H]-Ins(1,3,4)P3], [3H]inositol 1,3-bisphosphate, and [3H]-inositol 4-monophosphate ([3H]Ins4P) increased more slowly. The rapid responses were not reduced by the removal of extracellular Ca2+, but they were no longer sustained over time. The turnover rates of selected inositol phosphate isomers have been estimated in the intact cell. [3H]Ins(1,4,5)P3 was rapidly metabolized (t1/2 of 11 s), whereas the other isomers were metabolized more slowly, with t1/2 values of 113, 133, 104, and 66 s for [3H]Ins(1,3,4)P3, [3H]Ins(1,4)P2, an unresolved mixture of [3H]inositol 1- and 3-monophosphate ([3H]Ins1/3P), and [3H]Ins4P, respectively. The calculated turnover rate of [3H]Ins(1,4,5)P3 was sufficient to account for the turnover of the combination of both [3H]Ins(1,4)P2 and [3H]Ins(1,3,4)P3 but not that of [3H]Ins1/3P or [3H]Ins4P. These observations demonstrate that histamine stimulation of these cells results in a complex Ca2+-dependent and -independent response that may involve the hydrolysis of inositol phospholipids in addition to phosphatidylinositol 4,5-bisphosphate.  相似文献   

6.
Using double-barreled, Ca2(+)-sensitive microelectrodes, we have examined the characteristics of the Ca2+ release by inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) in the various layers of Xenopus laevis eggs in which the organelles had been stratified by centrifugation. Centrifugation of living eggs stratifies the organelles yet retains them in the normal cytoplasmic milieu. The local increase in intracellular free Ca2+ in each layer was directly measured under physiological conditions using theta-tubing, double-barreled, Ca2(+)-sensitive microelectrodes in which one barrel was filled with the Ca2+ sensor and the other was filled with Ins(1,4,5)P3 for microinjection. The two tips of these electrodes were very close to each other (3 microns apart) enabling us to measure the kinetics of both the highly localized intracellular Ca2+ release and its subsequent removal in response to Ins(1,4,5)P3 injection. Upon Ins(1,4,5)P3 injection, the ER-enriched layer exhibited the largest release of Ca2+ in a dosage-dependent manner, whereas the other layers, mitochondria, lipid, and yolk, released 10-fold less Ca2+ in a dosage-independent manner. The removal of released Ca2+ took place within approximately 1 min. The sensitivity to Ins(1,4,5)P3 and the time course of intracellular Ca2+ release in the unstratified (unactivated) egg is nearly identical to that observed in the ER layer of the stratified egg. Our data suggest that the ER is the major organelle of the Ins(1,4,5)P3-sensitive Ca2+ store in the egg of Xenopus laevis.  相似文献   

7.
We tested lysophosphatidic acid (LPA), known to induce inositol phosphate generation and calcium signals as well as rearrangements of the cytoskeleton and mitogenic responses in fibroblasts, for its ability to activate phospholipase C in an exocrine cell system, the salt-secreting cells from the avian nasal salt gland. LPA (>10 nmol/l) caused the generation of inositol phosphates from membrane-bound phosphatidylinositides. The resulting calcium signals resembled those generated upon activation of muscarinic receptors, the physiological stimulus triggering salt secretion in these cells. However, close examination of the LPA-mediated calcium signals revealed that the initial calcium spike induced by high concentrations of LPA (>10 μmol/l) may contain a component that is not dependent upon generation of inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) and may result from calcium influx from the extracellular medium induced by LPA in a direct manner. Low concentrations of LPA (<10 μmol/l), however, induce inositol phosphate generation, Ins(1,4,5)P3-mediated release of calcium from intracellular pools and calcium entry. These effects seem to be mediated by a specific plasma membrane receptor and a G protein transducing the signal to phospholipase C in a pertussis-toxin-insensitive manner. Signaling pathways of the muscarinic receptor and the putative LPA-receptor seem to merge at the G-protein level as indicated by the fact that carbachol and LPA trigger hydrolysis of the same pool of phosphatidylinositol (4,5)-bisphosphate (PIP2) and mobilize calcium from the same intracellular stores.  相似文献   

8.
Inositol 1,4,5-trisphosphate generated by the action of a phospholipase C (PLC) mediates release of intracellular Ca2+ that is essential for sperm-induced activation of mammalian eggs. Much attention currently focuses on the role of sperm-derived PLCζ in generating changes in egg intracellular Ca2+ despite the fact that PLCζ constitutes a very small fraction of the total amount of PLC in a fertilized egg. Eggs express several isoforms of PLC, but a role for an egg-derived PLC in sperm-induced Ca2+ oscillations has not been examined. Reducing egg PLCβ1 by a transgenic RNAi approach resulted in a significant decrease in Ca2+ transient amplitude, but not duration or frequency, following insemination. Furthermore, overexpressing PLCβ1 by microinjecting a Plcb1 cRNA significantly perturbed the duration and frequency of Ca2+ transients and disrupted the characteristic shape of the first transient. These results provide the first evidence for a role of an egg-derived PLC acting in conjunction with a sperm-derived PLCζ in egg activation.  相似文献   

9.
Second messengers derived from inositol lipids   总被引:2,自引:0,他引:2  
Many hormones, growth factors, and neurotransmitters stimulate their target cells by promoting the hydrolysis of plasma-membrane phosphoinositides to form the two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In such cells, ligand-receptor interaction stimulates specific phospholipases that are activated by guanyl nucleotide regulatory G proteins or tyrosine phosphorylation. In many cells, the initial rise in cytoplasmic calcium due to Ins(1,4,5)P3-induced mobilization of calcium from agonistsensitive stores is followed by a sustained phase of cytoplasmic calcium elevation that maintains the target-cell response, and is dependent on influx of extracellular calcium. Numerous inositol phosphates are formed during metabolism of the calcium-mobilizing messenger, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3)], to lower and higher phosphorylated derivatives. The cloning of several phospholipase-C isozymes, as well as the Ins(1,4,5)P3-5 kinase and the Ins(1,4,5)P3 receptor, have clarified several aspects of the diversity and complexity of the phosphoinositide-calcium signaling system. In addition to their well-established roles in hormonal activation of cellular responses such as secretion and contraction, phospholipids and their hydrolysis products have been increasingly implicated in the actions of growth factors and oncogenes on cellular growth and proliferation.  相似文献   

10.
Zhao J  Guo Y  Kosaihira A  Sakai K 《Planta》2004,219(1):121-131
Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] rapidly accumulates in elicited Cupressus lusitanica Mill. cultured cells by 4- to 5-fold over the control, and then it is metabolized. Correspondingly, phospholipase C (PLC) activity toward phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is stimulated to high levels by the elicitor and then decreases whereas Ins(1,4,5)P3 phosphatase activity declines at the beginning of elicitation and increases later. These observations indicate that elicitor-induced biosynthesis and dephosphorylation of Ins(1,4,5)P3 occur simultaneously and that the Ins(1,4,5)P3 level may be regulated by both PtdIns(4,5)P2–PLC and Ins(1,4,5)P3 phosphatases. Studies on the properties of PLC and Ins(1,4,5)P3 phosphatases indicate that PLC activity toward PtdIns(4,5)P2 was optimal at a lower Ca2+ concentration than activity toward phosphatidylinositol whereas Ins(1,4,5)P3 phosphatase activity is inhibited by high Ca2+ concentration. This suggests that Ins(1,4,5)P3 biosynthesis and degradation may be regulated by free cytosolic Ca2+. In addition, a relationship between Ins(1,4,5)P3 signaling and accumulation of a phytoalexin (-thujaplicin) is suggested because inhibition or promotion of Ins(1,4,5)P3 accumulation by neomycin or LiCl affects elicitor-induced production of -thujaplicin. Moreover, ruthenium red inhibits elicitor-induced accumulation of -thujaplicin while thapsigargin alone induces -thujaplicin accumulation. These results suggest that Ca2+ released from intracellular calcium stores may mediate elicitor-induced accumulation of -thujaplicin via an Ins(1,4,5)P3 signaling pathway, since it is widely accepted that Ins(1,4,5)P3 can mobilize Ca2+ from intracellular stores. This work demonstrates an elicitor-triggered Ins(1,4,5)P3 turnover, defines its enzymatic basis and regulation, and suggests a role for Ins(1,4,5)P3 in elicitor-induced phytoalexin accumulation via a Ca2+ signaling pathway.Abbreviations Ins(1,4,5)P3 Inositol-1,4,5-trisphosphate - Ins(1,4)P2 Inositol-1,4-bisphosphate - Ins(4,5)P2 Inositol-4,5-bisphosphate - Ins(1)P Inositol 1-phosphate - Ins(4)P Inositol 4-phosphate - PLC Phospholipase C - PtdIns Phosphatidylinositol - PtdIns(4,5)P2 Phosphatidylinositol 4,5-bisphosphate - YE Yeast elicitor  相似文献   

11.
 Pollen tube reorientation is a dynamic cellular event crucial for successful fertilization. Previously, it was shown that reorientation is preceded by an asymmetric increase of cytosolic free calcium ([Ca2+]c) in the side of the apex to which the cell will bend. In order to find the targets for this signal transduction pathway, the effects of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in the reorientation process were analyzed. Ins(1,4,5)P3 was artificially increased in different cell domains by localized photoactivation of caged Ins(1,4,5)P3 and its effects on [Ca2+]c monitored by ion confocal microscopy. It was found that photolysis of caged Ins(1,4,5)P3 in the nuclear or subapical region resulted in a transient increase in [Ca2+]c and reorientation of the growth axis, while photolysis in the apex frequently resulted in disturbed growth or tip bursting. Perfusion of the cells with the Ins(1,4,5)P3 receptor blocker heparin prior to photoactivation inhibited the increase in [Ca2+]c and no reorientation was observed. Ca2+ release from Ins(1,4,5)P3-dependent stores localized in the shank of the tube thus seems to be part of the signal transduction pathway that controls tube guidance, although not the primary stimulus leading to reorientation. Received: 5 May 1998 / Accepted: 11 June 1998  相似文献   

12.
Inositol-1,4,5-trisphosphate 3-kinase-A (itpka) accumulates in dendritic spines and seems to be critically involved in synaptic plasticity. The protein possesses two functional activities: it phosphorylates inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) and regulates actin dynamics by its F-actin bundling activity. To assess the relevance of these activities for neuronal physiology, we examined the effects of altered itpka levels on cell morphology, Ins(1,4,5)P3 metabolism and dendritic Ca2 + signaling in hippocampal neurons. Overexpression of itpka increased the number of dendritic protrusions by 71% in immature primary neurons. In mature neurons, however, the effect of itpka overexpression on formation of dendritic spines was weaker and depletion of itpka did not alter spine density and synaptic contacts. In synaptosomes of mature neurons itpka loss resulted in decreased duration of Ins(1,4,5)P3 signals and shorter Ins(1,4,5)P3-dependent Ca2 + transients. At synapses of itpka deficient neurons the levels of Ins(1,4,5)P3-5-phosphatase (inpp5a) and sarcoplasmic/endoplasmic reticulum calcium ATPase pump-2b (serca2b) were increased, indicating that decreased duration of Ins(1,4,5)P3 and Ca2 + signals results from compensatory up-regulation of these proteins. Taken together, our data suggest a dual role for itpka. In developing neurons itpka has a morphogenic effect on dendrites, while the kinase appears to play a key role in shaping Ca2 + transients at mature synapses.  相似文献   

13.
The effect of channel opening in the tonoplast by d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] has been examined on red beet (Beta vulgaris) vacuoles. Patch-clamp measurements of the vacuolar potential and current were performed on vacuoles isolated in 0.1 micromolar free Ca2+ medium. With vacuoles clamped at +30 millivolts, the Ins(1,4,5)P3 induced changes in current were depending on the Ca2+ buffer strength in the external medium. The spontaneous depolarization of vacuoles in which H+-pumps were activated by 5 millimolar MgATP was increased from +6 to +18 millivolts by 1 micromolar Ins(1,4,5)P3. We have interpreted our data by assuming that even with 2 millimolar EGTA to buffer Ca2+ at 0.1 micromolar in the external medium, Ins(1,4,5)P3 released enough Ca2+ from the vacuole to produce an accumulation of this ion near the tonoplast. Apart from their dependency with free Ca2+ in the cytoplasm, the electrical properties of the tonoplast could be depending on the Ins(1,4,5)P3 and Ca2+ buffer values in the cytoplasm.  相似文献   

14.
Kim HY  Cote GG  Crain RC 《Planta》1996,198(2):279-287
Leaflet movements of Samanea saman (Jacq.) Merr. depend in part upon circadian-rhythmic, light-regulated K+ fluxes across the plasma membranes of extensor and flexor cells in opposing regions of the leaf-moving organ, the pulvinus. We previously showed that blue light appears to close open K+ channels in flexor protoplasts during the dark period (subjective night) (Kim et al., 1992, Plant Physiol 99: 1532–1539). In contrast, transfer to darkness apparently closes open K+ channels in extensor protoplasts during the light period (subjective day) (Kim et al., 1993, Science 260: 960–962). We now report that both these channel-closing stimuli increase inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] levels in the appropriate protoplasts. If extensor cells are given a pulse of red light followed by transfer to darkness, channels still apparently close (Kim et al. 1993) but changes in Ins(1,4,5)P3 levels are complex with an initial decrease under red light followed by accumulation. Neomycin, an inhibitor of polyphosphoinositide hydrolysis, inhibits both blue-light-induced Ins(1,4,5)P3 production and K+-channel closure in flexor protoplasts and both dark-induced Ins(1,4,5)P3 production and K+ channel closure in extensor protoplasts. The G-protein activator, mastoparan, mimics blue light and darkness in that it both increases Ins(1,4,5)P3 levels and closes K+ channels in the appropriate cell type at the appropriate time. These results indicate that phospholipase C-catalyzed hydrolysis of phosphoinositides, possibly activated by a G protein, is an early step in the signal-transduction pathway by which blue light and darkness close K+ channels in S. saman pulvinar cells.Abbreviations DiS-C3-(5) 3,3-dipropylthiadicarbocyanine iodide - F measure change in Dis-C3-(5) fluorescence - Fo initial Dis-C3-(5) fluorescence - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PtdIns(4,5)P2 phosphatidylinositol 4,5-bisphosphate - rbc red blood cell Supported by grants from NSF (IBN 9206179 and MCB 9305154) and U.S.-Israel Binational Agricultural Research and Development Fund (IS-1670-90RC) to R.C.C. We thank the University of Connecticut Biotechnology Center for the use of a fluorescent spectrophotometer.  相似文献   

15.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

16.
The wave of activation current in the Xenopus egg   总被引:8,自引:0,他引:8  
A ring-shaped wave of inward current, the activation current, propagates across the Xenopus egg from the site of activation during the positive phase of the activation or fertilization potential. This activation current wave is due to an increased chloride conductance and reflects the propagated of the ionic channels responsible for the fertilization potential. These channels are present in the animal and vegetal hemispheres; however, the magnitude of the activation current is 6-7 times greater in the animal hemisphere. Outward current of a smaller magnitude and spread out over a larger area precedes and follows the inward current except at the point of activation where the current is first inward. The inward current wave is detected in all eggs activated by sperm and in eggs activated by pricking with a sharp needle, by application of the Ca2+ ionophore, A23187, and by intracellular iontophoresis of Ca2+ or inositol 1,4,5-trisphosphate. Reduction of the inward current by TMB-8, which blocks intracellular calcium release in some cells, suggests that the activation current channels are calcium sensitive and that the current wave is concomitant with a wave of increased intracellular calcium initiated by sperm-egg interaction. The wave of cortical granule exocytosis and two or more contraction waves follow the current wave.  相似文献   

17.
The phospholipase C (PLC; EC 3.1.4.3) activity in isolated plasma membranes of light-grown wheat (Triticum aestivum L. cv. Prelude) leaves was investigated. The activity against the polyphosphoinositides was strongly dependent on Ca2+ and was affected by the anionic detergent deoxycholate (DOC). In the presence of 20 M Ca2+ the PLC activity preferred phosphatidylinositol 4,5-bisphosphate (PIP2) over phosphatidylinositol 4-monophosphate (PIP) as a substrate. Instead, with 1 mM Ca2+ the enzyme clearly favoured PIP. In addition, the PIP2-PLC activity was increased by Mg2+ and in the presence of GTP, guanosine 5-(-thio)-triphosphate as well as ATP, CTP, guanosine 5-diphosphate and guanosine 5-(-thio)-diphosphate. Further analysis showed that a molybdate-sensitive phosphatase activity catalysing the dephosphorylation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is also associated with the plasma-membrane vesicles. Dephosphorylation of Ins(1,4,5)P3 was reduced in the presence of GTP or by inclusion of the unspecific phosphatase inhibitor molybdate. The results indicate the presence of a PIP2-PLC activity and the presence of a molybdate-sensitive phosphatase activity in wheat plasma-membrane vesicles.Abbreviations DOC deoxycholate - IDPase inosine 5-diphosphatase - InsPs inositol phosphates, the numbering at the end indicates the number of phosphate residues and when their positions on the inositol ring are known they are indicated in parentheses, i.e. - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PIP phosphatidylinositol 4-monophosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PLC phospholipase C This work was financially supported by grant from the Deutsche Forschungsgemeinschaft (DFG). M. C. Arz gratefully acknowledges the support of a Graduiertenstipendium des Landes Nordrhein-Westfalen (Germany). We wish to thank S. Laden and G.E. Grambow for assistance.  相似文献   

18.
The effects of L-glutamate, acetylcholine, and serotonin (5HT) were examined on generation of inositol 1,4,5-triphosphate [Ins(1,4,5)P3], in membrane preparations of the cestode Hymenolepis diminuta. Only L-glutamate and acetylcholine stimulated a significant elevation in Ins(1,4,5)P3. The response to L-glutamate was stereospecific; D-glutamate or L-aspartate were not as potent.A role for G-protein(s) was supported by the observations that sodium fluoride stimulated Ins(1,4,5)P3 generation, and the L-glutamate response was potentiated by GTP and GTP-S and was suppressed by GDPS. However, studies with pertussis and cholera toxins indicated that the putative G-protein(s) was not pertussis or cholera toxin sensitive.The pharmacological profile of the L-glutamate response was examined partially. Trans-ACPD was a very effective agonist at 10−5M. While 10−3M L-glutamate, NMDA, and AMPA significantly elevated Ins(1,4,5)P3 levels, quisqualate and kainate did not. The elevation of Ins(1,4,5)P3 levels by L-glutamate and NMDA was antagonized by the specific glutamatergic antagonists AP-5, AP-7, CNQX, and CPP. While the response to ACPD was antagonized by AP5, CPP and CPG, CNQX was without effect.Collectively, the data support the hypothesis that in the cestode H. diminuta, L-glutamate activation of a metabotropic (ACPD) and/or ionotropic-like AMPA/NMDA receptor subtypes proceeds via a G protein(s) to enhance phospholipase C activity, ultimately resulting in the elevation of Ins(1,4,5)P3 levels in the tissues.  相似文献   

19.
  • 1.1. The mobilization of Ca2+ from intracellular stores by d-myo-inositol 1,4,5-triphosphate[Ins(1,4,5)P3] is now widely accepted as the primary link between plasma membrane receptors that stimulate phospholipase C and the subsequent increase in intracellular free Ca2+ that occurs when such receptors are activated (Berridge, 1993). Since the observations of VoIpe et al. (1985) which showed that Ins(1,4,5)P3 could induce Ca2+ release from isolated terminal cisternae membranes and elicit contracture of chemically skinned muscle fibres, research has focused on the role of Ins(1,4,5)P3 in the generation of SR Ca2+ transients and in the mechanism of excitation-contraction coupling (EC-coupling).
  • 2.2. The mechanism of signal transduction at the triadic junction during EC-coupling is unknown. Asymmetric charge movement and mechanical coupling between highly specialized triadic proteins has been proposed as the primary mechanism for voltage-activated generation of SR Ca2+ signals and subsequent contraction. Ins(1,4,5)P3 has also been proposed as the major signal transduction molecule for the generation of the primary Ca2+ transient produced during EC-coupling.
  • 3.3. Investigations on the generation of Ca2+ transients by Ins(1,4,5)P3 have been conducted on ion channels incorporated into lipid bilayers, skinned and intact fibres and isolated membrane vesicles. Ins(1,4,5)P3 induces SR Ca2+ release and the enzymes responsible for its synthesis and degradation are present in muscle tissue. However, the sensitivity of the Ca2+ release mechanism to Ins(l,4,5)P3 is highly dependent on experimental conditions and on membrane potential.
  • 4.4. While Ins(1,4,5)P3 may not be the major signal transduction molecule for the generation of the primary Ca2+ signal produced during voltage-activated contraction, this inositol polyphosphate may play a functional role as a modulator of EC-coupling and/or of the processes of myoplasmic Ca2+ regulation occurring on a time scale of seconds, during the events of contraction.
  相似文献   

20.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号