首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5- hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.  相似文献   

2.
In this study, we investigated age-related changes in glucagon-like peptide-1 receptor (GLP-1R) immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. In the postnatal month 3 (PM 3) group, GLP-1R immunoreaction was well observed in neurons, especially pyramidal and non-pyramidal cells in the hippocampus proper, and granule and polymorphic cells in the dentate gyrus. In the hippocampus proper, GLP-1R immunoreactivity in neurons was maintained until PM 24. In the dentate gyrus, however, GLP-1R immunoreactivity in granule cells, not polymorphic cells, was hardly detected from PM 6. Western blot analysis also showed that age-dependent change patterns in GLP-1R protein levels in the gerbil hippocampus were similar to the immunohistochemical changes. These results indicate that GLP-1R immunoreactivity was markedly decreased in dentate granule cells from PM 6, showing that GLP-1R immunoreactivity and its protein levels were decreased in the adult and aged gerbil hippocampus.  相似文献   

3.
4.
5.
Dynamin (DNM) plays roles in membrane dynamics, vesicle formation, and transport. In the present study, we compared DNM-1 and DNM-2 protein expressions between the adult (postnatal month 6) and aged (postnatal month 24) gerbil hippocampus using immunohistochemistry and western blot analysis. DNM-1 and DNM-2 immunoreactivities were primarily observed in hippocampal principal neurons: pyramidal cells in the hippocampus proper (CA1–CA3) and granule cells in the dentate gyrus. DNM-1 and DNM-2 immunoreactivities in principal neurons were significantly increased in the aged group compared with the adult group. In addition, DNM-1 and DNM-2 protein levels as well as phospho-DNM-1 level were significantly increased in the aged group. These results indicate that the increases of DNM-1 and DNM-2 protein expressions may reflect the age-related changes in hippocampal function.  相似文献   

6.
7.
CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3′,5′-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network–based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.  相似文献   

8.
Considerable attention has recently been focused on the postnatal persistence of neurogenesis in the dentate gyrus of the hippocampus and the roles of signals from the primary cilium in the different functions of an increasing number of tissues and their malfunctions. Here we summarize the evidence that ties sonic hedgehog-triggered proliferogenic signaling from the primary cilia on granule cell progenitors in the adult dentate subgranular zone to maintain a pool of new “blank slate” dentate granule cells. These can be recruited to bundle and encode novel inputs flowing from various regions of the brain into the dentate gyrus via the entorhinal cortex without altering and erasing the synaptic patterns from previous inputs inscribed on older granule cells.  相似文献   

9.
This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.  相似文献   

10.
Insulin-like growth factor-I (IGF-I) is a multifunctional polypeptide and has diverse effects on brain functions. In the present study, we compared IGF-I and IGF-I receptor (IGF-IR) immunoreactivity and their protein levels between the adult (postnatal month 6) and aged (postnatal month 24) mouse hippocampus and somatosensory cortex. In the adult hippocampus, IGF-I immunoreactivity was easily observed in the pyramidal cells of the stratum pyramidale in the hippocampus proper and in the granule cells of the granule cell layer of the dentate gyrus. In the adult somatosensory cortex, IGF-I immunoreactivity was easily found in the pyramidal cells of layer V. In the aged groups, IGF-I expression was dramatically decreased in the cells. Like the change of IGF-I immunoreactivity, IGF-IR immunoreactivity in the pyramidal and granule cells of the hippocampus and in the pyramidal cells of the somatosensory cortex was also markedly decreased in the aged group. In addition, both IGF-I and IGF-IR protein levels were significantly decreased in the aged hippocampus and somatosensory cortex. These results indicate that the apparent decrease of IGF-I and IGF-IR expression in the aged mouse hippocampus and somatosensory cortex may be related to age-related changes in the aged brain.  相似文献   

11.
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.  相似文献   

12.
We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG), but not undifferentiated neuronal progenitor cells (NPCs) from ventral subventricular zone (SVZ), results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2). NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control). By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+), whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+). At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative). Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78%) expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.  相似文献   

13.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

14.
Glucokinase (GK) and its regulatory protein (GKRP) play roles in glucose utilization as well as glucose-sensing process in the brain. In the present study, we compared GK and GKRP protein expressions in the hippocampus of adult (postnatal month 6) and aged (postnatal month 24) gerbils using immunohistochemistry and western blot analysis. Both GK and GKRP immunoreactivities were observed primarily in the pyramidal cells of the hippocampus proper and in the granule cells of the dentate gyrus of the adult and aged hippocampus. GK, not GKRP, immunoreactivity was apparently decreased in the pyramidal and granule cells of the aged group compared with that in the adult group. In addition, western blot analysis also showed that the GK, not GKRP, protein level was significantly decreased in the aged hippocampus. These results indicate that the decrease of GK may be closely related to the reduction of glucose utilization and uptake, although the ability for regulation of GK is maintained in the aged hippocampus.  相似文献   

15.
16.
17.
Adult neurogenesis is frequently studied in the mouse hippocampus. We examined the morphological development of adult-born, immature granule cells in the suprapyramidal blade of the septal dentate gyrus over the period of 7–77 days after mitosis with BrdU-labeling in 6-weeks-old male Thy1-GFP mice. As Thy1-GFP expression was restricted to maturated granule cells, it was combined with doublecortin-immunolabeling of immature granule cells. We developed a novel classification system that is easily applicable and enables objective and direct categorization of newborn granule cells based on the degree of dendritic development in relation to the layer specificity of the dentate gyrus. The structural development of adult-generated granule cells was correlated with age, albeit with notable differences in the time course of development between individual cells. In addition, the size of the nucleus, immunolabeled with the granule cell specific marker Prospero-related homeobox 1 gene, was a stable indicator of the degree of a cell''s structural maturation and could be used as a straightforward parameter of granule cell development. Therefore, further studies could employ our doublecortin-staging system and nuclear size measurement to perform investigations of morphological development in combination with functional studies of adult-born granule cells. Furthermore, the Thy1-GFP transgenic mouse model can be used as an additional investigation tool because the reporter gene labels granule cells that are 4 weeks or older, while very young cells could be visualized through the immature marker doublecortin. This will enable comparison studies regarding the structure and function between young immature and older matured granule cells.  相似文献   

18.
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.  相似文献   

19.
14-3-3 proteins are ubiquitous signalling molecules that regulate development and survival pathways in brain. Altered expression and cellular localization of 14-3-3 proteins has been implicated in neurodegenerative diseases and in neuronal death after acute neurological insults, including seizures. Presently, we examined expression and function of 14-3-3 isoforms in vitro using mouse organotypic hippocampal cultures. Treatment of cultures with the endoplasmic reticulum (ER) stressor tunicamycin caused an increase in levels of 14-3-3 zeta within the ER-containing microsomal fraction, along with up-regulation of Lys-Asp-Glu-Leu-containing proteins and calnexin, and the selective death of dentate granule cells. Depletion of 14-3-3 zeta levels using small interfering RNA induced both ER stress proteins and death of granule cells. Treatment of hippocampal cultures with the excitotoxin kainic acid increased levels of Lys-Asp-Glu-Leu-containing proteins and microsomal 14-3-3 zeta levels and caused cell death within the CA1, CA3 and dentate gyrus of the hippocampus. Kainic acid-induced damage was significantly increased in each hippocampal subfield of cultures treated with small interfering RNA targeting 14-3-3 zeta. The present data indicate a role for 14-3-3 zeta in survival responses following ER stress and possibly protection against seizure injury to the hippocampus.  相似文献   

20.
Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号