首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The aim of the present study was to compare spatial electromyographic (EMG) potential distribution during force production between elderly and young individuals using multi-channel surface EMG (SEMG). Thirteen elderly (72-79 years) and 13 young (21-27 years) healthy male volunteers performed ramp submaximal contraction during isometric knee extension from 0% to 65% of maximal voluntary contraction. During contraction, multi-channel EMG was recorded from the vastus lateralis muscle. To evaluate alteration in heterogeneity and pattern in spatial EMG potential distribution, coefficient of variation (CoV), modified entropy and correlation coefficients with initial torque level were calculated from multi-channel SEMG at 5% force increment. Increase in CoV and decrease in modified entropy of RMS with increase of exerted torque were significantly smaller in elderly group (p < 0.05) and correlation coefficients with initial torque level were significantly higher in elderly group than in young group at moderate torque levels (p < 0.05). These data suggest that the increase of heterogeneity and the change in the activation pattern are smaller in elderly individuals than in young individuals. We speculated that multi-channel SEMG pattern in elderly individual reflects neuromuscular activation strategy regulated predominantly by clustering of similar type of muscle fibers in aged muscle.  相似文献   

2.
The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMSmax and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue.Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMSmax registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction.The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76–140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMSmax. The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low frequency bands up to 25 Hz are especially feasible for type of muscle.  相似文献   

3.
The physical mechanics of music making is important both in the prevention of injuries and in guiding how music is performed and taught. Electromyography has potential as a resource in understanding the loads involved in instrumental playing; however, only a small number of projects have been undertaken, and little is understood on the muscle activity used during bowing on string instruments. This study aimed to measure the muscle activity at the bowing shoulder of a cellist during cello playing and to establish if fine-wire EMG is useful in understanding muscle recruitment in string players without interfering with normal playing ability. This project used a combination of fine-wire and surface EMG to evaluate the muscular load placed on the right shoulder of a professional cellist whilst playing a set of various bowing exercises. The results indicated that different bowing techniques produced statistically different muscle activity levels, with the supraspinatus muscle in particular maintaining higher mean contraction (20% MVC) during all bowing patterns tested. Fine-wire EMG was useful in measuring shoulder muscle load and did not interfere with normal playing technique of the subject. Overall, the study presents a working protocol from which future studies may be able conduct further research.  相似文献   

4.
The objective of this study was to investigate the relative contributions of superficial and deep ankle plantarflexors during repetitive submaximal isometric contractions using surface electromyography (SEMG) and positron emission tomography (PET). Myoelectric signals were obtained from twelve healthy volunteers (27.3 ± 4.2 yrs). A tracer ([18F]-FDG) was injected during the exercise and PET scanning was done immediately afterwards. The examined muscles included soleus (Sol), medial gastrocnemius (MG), lateral gastrocnemius (LG), and flexor hallucis longus (FHL). It was found that isometric maximal voluntary contraction (MVC) force, muscle glucose uptake (GU) rate, and SEMG of various plantarflexors were comparable bilaterally. In terms of %EMG MVC, FHL and MG displayed the highest activity (∼34%), while LG (∼21%) had the lowest activity. Cumulative SEMG from all parts of the triceps surae (TS) muscle accounted for ∼70% of the combined EMG signal of all four plantarflexors. As for GU, the highest quantity was observed in MG (2.4 ± 0.8 μmol * 100 g−1 * min−1), whereas FHL (1.8 ± 0.6 μmol * 100 g−1 * min−1) had the lowest uptake. Cumulative GU of TS constituted nearly 80% of the combined GU. The findings of this study provide valuable reference for studies where individual muscle contributions are estimated using models and simulations.  相似文献   

5.
The gold standard exercise for recruitment of the lower trapezius is the Y prone exercise which is performed above 90° of shoulder elevation. However, clinicians often prescribe exercises that avoid high elevation postures during early stages of rehabilitation. Comparatively little data exists on relative muscle recruitment during lower arm elevation exercises. This study examined the EMG activity of four shoulder girdle muscles during four exercises accomplished below 90° of shoulder elevation and compared them to the Y prone while considering sex effects. Variance across exercises of the ratio between upper trapezius and lower trapezius was also explored. 32 healthy participants completed standardized muscle-specific MVCs and two repetitions of each exercise. The side lying external rotation and the wall slide exercises produced the highest peak EMG for the lower trapezius, both 33 and 29% lower than the Y Prone. For the upper trapezius to lower trapezius ratio, the side lying external rotation elicited the lowest value, followed by the Y prone and wall slide (53 and 59% respectively higher). Sex influenced some EMG values, typically interacting with exercise type. Thus, side lying external rotation and the wall slide are recommended for targeting the lower trapezius muscle during early rehabilitation.  相似文献   

6.
IntroductionAnatomic landmarks alone may not always be sufficient to accurately guide electromyography (EMG) electrode needle placement.MethodsSenior residents and fellows (n = 11) targeted 4 forearm muscles with anatomic landmarks alone versus with audiovisual EMG feedback. Accuracy of EMG needle placement was verified using neuromuscular ultrasound imaging.ResultsWhile relatively large and superficial FCR muscle was sampled at a rate of 100% with and without audiovisual EMG feedback, accuracy of deeper and/or smaller forearm muscles (FPL, EIP, and SUP) diminished significantly without audiovisual EMG feedback.DiscussionOur study suggests that in clinical scenarios in which an electrodiagnostician relies on anatomic landmarks alone to target small and deep muscles, the risk of misplacement of needle electrode is increased. Consideration for neuromuscular ultrasound to augment training and/or real time guidance in EMG practice may be appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号