首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B L Stoddard  J D Bui  D E Koshland 《Biochemistry》1992,31(48):11978-11983
The structure of the cytosolic extension of the first transmembrane region (TM1) of the Escherichia coli aspartate receptor (residues 3, 4, and 5) and conformational changes within that region have been characterized by targeted cross-linking studies and by measurement of the effect of aspartate binding on cross-linking and methylation rates and compared with the periplasmic extension of the same helix. These experiments show that (1) the cytosolic extension of TM1 is helical, with residues 4 and 4' closest together at the dimer interface; (2) the helix is more solvent-exposed at the cytosolic side of the membrane than on the periplasmic side; and (3) aspartate binding enhances the rate of cross-linking at Cys 4, and the resulting cross-linked receptor displays aspartate-induced transmembrane increases in methylation by the cytoplasmic methylase (the CheR protein). We conclude that aspartate induces a conformational change that does not involve large intersubunit movements that lead to an increase in distance between the cytosolic ends of the first membrane-spanning helices; rather, the motion involved is largely contained within individual subunits, possibly resulting in a small movement between positions 4 and 4'.  相似文献   

2.
The spatial structure of cytosolic chicken aspartate aminotransferase (AAT) has been determined by X-ray crystallographic analysis at 2.8 A resolution. AAT consists of two chemically identical subunits. Each subunit can be subdivided into the large pyridoxal phosphate (PLP) binding domain and the small domain. The two active sites of AAT are situated in deep clefts at the subunit interface. The binding of PLP and 2-oxoglutarate is described. Conformations of the following enzyme forms have been compared by difference Fourier syntheses: the nonliganded PLP-form in phosphate and acetate buffers; the non-liganded pyridoxamine phosphate (PMP) form; complexes of the PLP-form with glutarate and 2-oxoglutarate. Lattice-induced dynamic asymmetry of the dimeric AAT molecules was revealed. In one subunit the small domain is mobile and shifted either toward the active site ("closed" conformation) or in the opposite direction ("open" conformation). The closed conformation is induced by the binding of dicarboxylate anions. In the second subunit the small domain is immobile and shifted toward the active site in all enzyme forms or complexes studied. In this subunit, there occurs a rotation of the PLP ring by approximately 20 degrees toward the substrate site. The rotation is observed when crystals are soaked in 0.6 saturated (NH4)2SO4 solution buffered with 0.3 M potassium phosphate, pH 7.5; it was explained by formation of an external aldimine between PLP and NH3. This aldimine is not formed in the presence of dicarboxylates or acetate. It was inferred that dicarboxylate or acetate anions stabilize the internal PLP-lysine aldimine and prevent its reaction with ammonia. Conversion of AAT from the PLP- to PMP-form is accompanied by rotation of the coenzyme ring by approximately 20 degrees; the rotation occurs in both subunits.  相似文献   

3.
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.  相似文献   

4.
Phototropin (phot) is a blue-light receptor protein that triggers phototropic responses, chloroplast relocation, and stomata opening to maximize the efficiency of photosynthesis in higher plants. Phot is composed of three functional domains. The N-terminal half folds into two light-oxygen-voltage-sensing domains called LOV1 and LOV2, each binding a flavin mononucleotide to absorb blue light. The C-terminal half is a serine/threonine kinase domain that causes light-dependent autophosphorylation leading to cellular signaling cascades. LOV2 domain is primarily responsible for activation of the kinase, and LOV1 domain is thought to act as a dimerization site and to regulate sensitivity to activation by blue light. Here we show the crystal structures of LOV1 domains of Arabidopsis phot1 and phot2 in the dark at resolutions of 2.1 Å and 2.0 Å, respectively. Either LOV1 domain forms a dimer through face-to-face association of β-scaffolds in the crystallographic asymmetric unit. Three types of interactions stabilizing the dimer structures found are as follows: contacts of side chains in their β-scaffolds, hydrophobic interactions of a short helix found in the N-terminus of a subunit with the β-scaffolds of both subunits, and hydrogen bonds mediated by hydration water molecules filling the dimer interface. The critical residues for dimerization are Cys261, forming a disulfide bridge between subunits in phot1-LOV1 domain, and Thr217 and Met232 in phot2-LOV1. The topology in homodimeric associations of the LOV1 domains is discussed when referring to those of homodimers or heterodimers of light-oxygen-voltage-sensing or Per-ARNT-Sim domains. The present results also provide clues to understanding structural basis in dimeric interactions of Per-ARNT-Sim protein modules in cellular signaling.  相似文献   

5.
Coagulation factor IX-binding protein (IX-bp) isolated from the venom of the habu snake (Trimeresurus flavoviridis) is a disulfide-linked heterodimer consisting of homologous subunits A and B. The structure of IX-bp has been solved by X-ray crystallography at 2.6 A resolution to a crystallographic R -value of 0.181. The main-chain fold of each subunit is homologous to the carbohydrate-recognition domain of C-type lectins (C-type CRDs) except for the extended central loop. The structure is almost identical with that of factors IX and X-binding protein (IX/X-bp) as expected from the high level of amino acid sequence homology. The functional difference in ligand recognition from IX/X-bp must reside in the amino acid differences. A continuity of different amino acid residues located from the C-terminal of the second alpha-helix to the following loop forms the local conformational difference in this region between the two proteins. This loop participates in the formation of the concave surface between the two subunits, the putative binding site for the Gla-domain (gamma-carboxyglutamic acid-containing domain) of the coagulation factors. Another difference between the two proteins is in the relative disposition of subunits A and B. When the B subunits are superimposed, about a 6 degrees rotation is required for the superposition of the A subunits. A calcium ion links the second alpha-helix region to the C-terminal tail in each subunit and helps to stabilize the structure for Gla-domain binding. The interface created by the central loop swapping in the dimer IX-bp is almost identical with that seen within the monomeric C-type CRDs. This dimer forms as the result of the amino acid deletion in the linker region of the central loop of the original C-type lectins. Such a dimerization disrupts the lectin active site and creates a Gla-domain binding site, imparting functional diversity.  相似文献   

6.
The use of non-crystallographic symmetry restraints in the refinement of the haemocyanin hexamer from Panulirus interruptus at 3.2 A resolution has resulted in a final model with a very reasonable geometry and a crystallographic R-factor of 20.1%, using 59,193 observed structure factor amplitudes between 8.0 and 3.2 A. The mean co-ordinate error is approximately 0.35 A. The six subunits appear to be related by symmetry operations that differ slightly from 32 point group symmetry. The six subunits have essentially maintained the same structure. The hexamer, with point group 32, is best described as a trimer of "tight dimers". The contacts between the subunits in such a dimer are more numerous, and better conserved during evolution than contacts in a trimer. The interface of a tight dimer is separated by an internal cavity into two "contact areas". The contact area nearest to the centre of the hexamer is most extensive and consists mainly of residues that are quite conserved among arthropodan haemocyanins. All these residues are provided by the second domain of each subunit. Hence, this second domain may play a crucial role in the allosteric functioning of this oxygen transport protein. The dinuclear copper oxygen-binding site resides in the centre of domain 2. This oxygen-binding centre is not fully accessible from the solvent. Three large cavities occur, however, within each subunit at the interfaces of the three domains. All three cavities contain ordered water molecules, and two of them are accessible from the surrounding solvent. These cavities may play a role in facilitating fast movement of dioxygen towards the binding site, which is situated in a highly conserved, rather hydrophobic core. A detailed definition of the geometry of the copper site is, of course, not possible at the limited resolution of 3.2 A. Nevertheless, it is possible to conclude that each copper is co-ordinated by two, more or less tightly bound, histidine ligands and one more distant histidine residue. The six histidine residues utilize their N epsilon atoms for copper co-ordination, while their N delta atoms are engaged in hydrogen bonds with conserved residues or water molecules. The two distant histidine ligands are located in apical positions and are on opposite sides with respect to the plane approximately defined by the four more tightly bound histidine ligands and the two copper ions. The copper-to-copper distance is 3.5 to 3.6 A in four of the subunits, but this distance deviates considerably in two others.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Escherichia coli dimethylsulfoxide (DMSO) reductase is a trimeric enzyme with a catalytic dimer (DmsAB) and an integral membrane anchor (DmsC). Using site-directed mutagenesis, we examined six residues in the periplasmic loop between helices two and three, potentially involved in menaquinol binding in DmsC. Mutants were characterised for growth, enzyme expression and activity, and 2-n-heptyl-4-hydroxoquinoline N-oxide (HOQNO) inhibitor binding. Mutations of leucine 66, glycine 67, arginine 71, phenylalanine 73 and serine 75 had no effect on menaquinol binding. Only a glutamate residue (E87) located in helix three was important for menaquinol binding. E87 was replaced with lysine, glutamine and aspartate. All three mutants were assembled into the membrane. Neither the lysine nor the glutamine mutant enzymes were able to support anaerobic growth on glycerol/DMSO minimal media or oxidise lapachol. The glutamine mutant bound the inhibitor with lower affinity compared to wild-type, whereas in the lysine mutant, binding was almost abolished. The aspartate mutant behaved as a wild-type enzyme. The data shows that E87 is important for menaquinol binding and oxidation and is likely to act as a proton acceptor in the menaquinol binding site.  相似文献   

8.
The interactions of monomeric and dimeric kinesin and ncd constructs with microtubules have been investigated using cryo-electron microscopy (cryo-EM) and several biochemical methods. There is a good consensus on the structure of dimeric ncd when bound to a tubulin dimer showing one head attached directly to tubulin, and the second head tethered to the first. However, the 3D maps of dimeric kinesin motor domains are still quite controversial and leave room for different interpretations. Here we reinvestigated the microtubule binding patterns of dimeric kinesins by cryo-EM and digital 3D reconstruction under different nucleotide conditions and different motor:tubulin ratios, and determined the molecular mass of motor-tubulin complexes by STEM. Both methods revealed complementary results. We found that the ratio of bound kinesin motor-heads to alphabeta-tubulin dimers was never reaching above 1.5 irrespective of the initial mixing ratios. It appears that each kinesin dimer occupies two microtubule-binding sites, provided that there is a free one nearby. Thus the appearances of different image reconstructions can be explained by non-specific excess binding of motor heads. Consequently, the use of different apparent density distributions for docking the X-ray structures onto the microtubule surface leads to different and mutually exclusive models. We propose that in conditions of stoichiometric binding the two heads of a kinesin dimer separate and bind to different tubulin subunits. This is in contrast to ncd where the two heads remain tightly attached on the microtubule surface. Using dimeric kinesin molecules crosslinked in their neck domain we also found that they stabilize protofilaments axially, but not laterally, which is a strong indication that the two heads of the dimers bind along one protofilament, rather than laterally bridging two protofilaments. A molecular walking model based on these results summarizes our conclusions and illustrates the implications of symmetry for such models.  相似文献   

9.
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c′ from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four‐helix bundle structure containing a covalently bound five‐coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer–monomer transition according to the absence and presence of CO. Herein, domain‐swapped dimeric AVCP was constructed and utilized to form a tetramer and high‐order oligomers. The X‐ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain‐swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain‐swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit–subunit interactions at the interfaces of the domain‐swapped dimer and monomer subunits in the tetramer were also similar to the subunit–subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain‐swapped dimer and two monomers upon CO binding. Without monomers, the domain‐swapped dimers formed tetramers, hexamers, and higher‐order oligomers in the absence of CO, whereas the oligomers dissociated to domain‐swapped dimers in the presence of CO, demonstrating that the domain‐swapped dimer maintains the CO‐induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer–monomer transition protein.  相似文献   

10.
The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase has been determined at 2.7 A resolution. Its first 120 amino acids form a central five-stranded, beta-pleated sheet surrounded by five alpha helices. In one of the four dyad-related dimers, the two active site Ser-10 residues are 19 A apart, perhaps close enough to contact and become covalently linked to the DNA at the recombination site. This dimer also forms the only closely packed tetramer found in the crystal. The subunit interface at a second dyad-related dimer is more extensive and more highly conserved among the homologous recombinases; however, its active site Ser-10 residues are more than 30 A apart. Side chains, identified by mutations that eliminate catalysis but not DNA binding, are located on the subunit surface near the active site serine and at the interface between a third dyad-related pair of subunits of the tetramer.  相似文献   

11.
The allosteric effectors of aspartate transcarbamoylase from Escherichia coli, CTP and ATP, associate with both the regulatory and the catalytic moieties of the enzyme. Studies with isolated, active subunits yield one binding site per regulatory dimer and one per catalytic trimer. Investigations of effector association with hybrid enzymes, containing either the three regulatory dimers or the two catalytic trimers in inactivated forms, indicate that the data obtained with isolated subunits can be used to analyze the binding patterns of these ligands to the native hexamer. Thus, the nonlinear Scatchard plots, characteristic of the binding of CTP and ATP to the native enzyme, can be interpreted in terms of three effector molecules associating with the regulatory subunits, and two binding to the catalytic moiety of the enzyme. Results with native protein in the presence of saturating concentrations of active site ligands support these assignments. The differences between the binding isotherms of CTP and ATP to the enzyme are due to their different affinities to the two types of subunits. The apparent half-of-the-site saturation of the regulatory moiety of aspartate transcarbamoylase supports the concept that this protein has a tendency to exist in an asymmetric state.  相似文献   

12.
Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.   总被引:13,自引:8,他引:5       下载免费PDF全文
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis. Each mutant exhibited a single amino acid replacement at residue 64, 69, or 73 in the Tar molecule. The wild-type Tar transducer contains arginines at all three of these positions, implying that electrostatic forces may play an important role in aspartate detection.  相似文献   

13.
Weng J  Ma J  Fan K  Wang W 《Biophysical journal》2008,94(2):612-621
ATP-binding cassette transporter BtuCD mediating vitamin B12 uptake in Escherichia coli couples the energy of ATP hydrolysis to the translocation of vitamin B12 across the membrane into the cell. Elastic normal mode analysis of BtuCD demonstrates that the simultaneous substrate trapping at periplasmic cavity and ATP binding at the ATP-binding cassette (BtuD) dimer proceeds readily along the lowest energy pathway. The transport power stroke is attributed to ATP-hydrolysis-induced opening of the nucleotide-binding domain dimer, which is coupled to conformational rearrangement of transmembrane domain (BtuC) helices leading to the closing at the periplasmic side and opening at the cytoplasmic gate. Simultaneous hydrolysis of two ATP is supported by the fact that antisymmetric movement of BtuD dimer implying alternating hydrolysis cannot induce effective conformational change of the translocation pathway. A plausible mechanism of translocation cycle is proposed in which the possible effect of the association of periplasmic binding protein BtuF to the transporter is also considered.  相似文献   

14.
The mammalian peptidoglycan recognition protein-S (PGRP-S) binds to peptidoglycans (PGNs), which are essential components of the cell wall of bacteria. The protein was isolated from the samples of milk obtained from camels with mastitis and purified to homogeneity and crystallized. The crystals belong to orthorhombic space group I222 with a = 87.0 Å, b = 101.7 Å and c = 162.3 Å having four crystallographically independent molecules in the asymmetric unit. The structure has been determined using X-ray crystallographic data and refined to 1.8 Å resolution. Overall, the structures of all the four crystallographically independent molecules are identical. The folding of PGRP-S consists of a central β-sheet with five β-strands, four parallel and one antiparallel, and three α-helices. This protein fold provides two functional sites. The first of these is the PGN-binding site, located on the groove that opens on the surface in the direction opposite to the location of the N terminus. The second site is implicated to be involved in the binding of non-PGN molecules, it also includes putative N-terminal segment residues (1-31) and helix α2 in the extended binding. The structure reveals a novel arrangement of PGRP-S molecules in which two pairs of molecules associate to form two independent dimers. The first dimer is formed by two molecules with N-terminal segments at the interface in which non-PGN binding sites are buried completely, whereas the PGN-binding sites of two participating molecules are fully exposed at the opposite ends of the dimer. In the second dimer, PGN-binding sites are buried at the interface while non-PGN binding sites are fully exposed at the opposite ends of the dimer. This form of dimeric arrangement is unique and seems to be aimed at enhancing the capability of the protein against specific invading bacteria. This mode of functional dimerization enhances efficiency and specificity, and is observed for the first time in the family of PGRP molecules.  相似文献   

15.
16.
The structures of pig heart and chicken heart citrate synthase have been determined by multiple isomorphous replacement and restrained crystallographic refinement for two crystal forms, a tetragonal form at 2·7 Å and a monoclinic form at 1·7 Å resolution, with crystallographic R-values of 0·199 and 0·192, respectively. The structure determination involved a novel application of restrained crystallographic refinement, in that the refinement of incomplete models was necessary in order to completely determine the course of the polypeptide chain. The recently determined amino acid sequence (Bloxham et al., 1981) has been fitted to the models. The molecule has substantially different conformations in the two crystal forms, and there is evidence that a conformational change is required for enzymatic activity.The molecule is a dimer of identical subunits with 437 amino acid residues each. The conformation is all α-helix, with 40 helices per dimer packing tightly to form a globular molecule. Many of the helices are kinked in various ways or bent smoothly over a large angle. Several of the helices show an unusual antiparallel packing.Each subunit is clearly divided into a large and a small domain. The two crystal forms differ by the relative arrangement of the two domains. The tetragonal form represents an open configuration with a deep cleft between the two domains, the monoclinic form is closed. The structural change from the open to the closed form can be described by an 18 ° rotation of the small domain relative to the large domain.Crystallographic analyses were performed with the product citrate bound in both crystal forms, with coenzyme A (CoA) and a citryl-CoA analogue bound to the monoclinic form. These studies establish the CoA and the citrate binding sites, and the conformations of the two product molecules in atomic detail. The subunits are extensively interdigitated, with one subunit making significant contributions to both the citrate and the CoA binding sites of the other subunit. The adenine moiety of CoA is bound to the small domain, and the pantothenic arm is bound to the large domain. The citrate molecule is bound in a cleft between the large domain. The citrate molecule is bound in a cleft between the large and small domain, with the si carboxymethylene group facing the SH arm of coenzyme A. In the monoclinic form, the cysteamine part of CoA shields the bound citrate completely from the solution. Partial reaction of CoA-SH and aspartate 375 to form aspartyl-CoA, and citrate to form citryl-CoA may occur in the crystals. The conformation of CoA is compact, characterized by an internal hydrogen bond O-52 … N-7 and a tightlybound water molecule O-51 … HOH … O-20.  相似文献   

17.
The structures of D-xylose isomerase from Arthrobacter strain B3728 containing the polyol inhibitors xylitol and D-sorbitol have been solved at 2.5 A and 2.3 A, respectively. The structures have been refined using restrained least-squares refinement methods. The final crystallographic R-factors for the D-sorbitol (xylitol) bound molecules, for 43,615 (32,989) reflections are 15.6 (14.7). The molecule is a tetramer and the asymmetric unit of the crystal contains a dimer, the final model of which, incorporates a total of 6086 unique protein, inhibitor and magnesium atoms together with 535 bound solvent molecules. Each subunit of the enzyme contains two domains: the main domain is a parallel-stranded alpha-beta barrel, which has been reported in 14 other enzymes. The C-terminal domain is a loop structure consisting of five helical segments and is involved in intermolecular contacts between subunits that make up the tetramer. The structures have been analysed with respect to molecular symmetry, intersubunit contacts, inhibitor binding and active site geometry. The refined model shows the two independent subunits to be similar apart from local deviations due to solvent contacts in the solvent-exposed helices. The enzyme is dependent on a divalent cation for catalytic activity. Two metal ions are required per monomer, and the high-affinity magnesium(II) site has been identified from the structural results presented here. The metal ion is complexed, at the high-affinity site, by four carboxylate side-chains of the conserved residues, Glu180, Glu216, Asp244 and Asp292. The inhibitor polyols are bound in the active site in an extended open chain conformation and complete an octahedral co-ordination shell for the magnesium cation via their oxygen atoms O-2 and O-4. The active site lies in a deep pocket near the C-terminal ends of the beta-strands of the barrel domain and includes residues from a second subunit. The tetrameric molecule can be considered to be a dimer of "active" dimers, the active sites being composed of residues from both subunits. The analysis has revealed the presence of several internal salt-bridges stabilizing the tertiary and quaternary structure. One of these, between Asp23 and Arg139, appears to play a key role in stabilizing the active dimer and is conserved in the known sequences of this enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.  相似文献   

19.
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.  相似文献   

20.
The Tar chemotactic signal transducer of Escherichia coli mediates attractant responses to L-aspartate and to maltose. Aspartate binds across the subunit interface of the periplasmic receptor domain of a Tar homodimer. Maltose, in contrast, first binds to the periplasmic maltose-binding protein (MBP), which in its ligand-stabilized closed form then interacts with Tar. Intragenic complementation was used to determine the MBP-binding site on the Tar dimer. Mutations causing certain substitutions at residues Tyr-143, Asn-145, Gly-147, Tyr-149, and Phe-150 of Tar lead to severe defects in maltose chemotaxis, as do certain mutations affecting residues Arg-73, Met-76, Asp-77, and Ser-83. These two sets of mutations defined two complementation groups when the defective proteins were co-expressed at equal levels from compatible plasmids. We conclude that MBP contacts both subunits of the Tar dimer simultaneously and asymmetrically. Mutations affecting Met-75 could not be complemented, suggesting that this residue is important for association of MBP with each subunit of the Tar dimer. When the residues involved in interaction with MBP were mapped onto the crystal structure of the Tar periplasmic domain, they localized to a groove at the membrane-distal apex of the domain and also extended onto one shoulder of the apical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号