首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The periplasmic leucine-binding protein is the primary receptor for the leucine transport system in Escherichia coli. We report here the structure of an open ligand-free form solved by molecular replacement and refined at 1.5-A resolution. In addition, two closed ligand-bound structures of the same protein are presented, a phenylalanine-bound form at 1.8 A and a leucine-bound structure at a nominal resolution of 2.4 A. These structures show the basis of this protein's ligand specificity, as well as illustrating the conformational changes that are associated with ligand binding. Comparison with earlier structures provides further information about solution conformations, as well as the different specificity of the closely related leucine/isoleucine/valine-binding protein.  相似文献   

3.
The structure of the maltodextrin or maltose-binding protein, an initial receptor for bacterial ABC-type active transport and chemotaxis, consists of two globular domains that are separated by a groove wherein the ligand is bound and enclosed by an inter-domain rotation. Here, we report the determination of the crystal structures of the protein complexed with reduced maltooligosaccharides (maltotriitol and maltotetraitol) in both the "closed" and "open" forms. Although these modified sugars bind to the receptor, they are not transported by the wild-type transporter. In the closed structures, the reduced sugars are buried in the groove and bound by both domains, one domain mainly by hydrogen-bonding interactions and the other domain primarily by non-polar interactions with aromatic side-chains. In the open structures, which abrogate both cellular activities of active transport and chemotaxis because of the large separation between the two domains, the sugars are bound almost exclusively to the domain rich in aromatic residues. The binding site for the open chain glucitol residue extends to a subsite that is distinct from those for the glucose residues that were uncovered in prior structural studies of the binding of active linear maltooligosaccharides. Occupation of this subsite may also account for the inability of the reduced oligosaccharides to be transported. The structures reported here, combined with those previously determined for several other complexes with active oligosaccharides in the closed form and with cyclodextrin in the open form, revealed at least four distinct modes of ligand binding but with only one being functionally active. This versatility reflects the flexibility of the protein, from very large motions of interdomain rotation to more localized side-chain conformational changes, and adaptation by the oligosaccharides as well.  相似文献   

4.
ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of d-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.  相似文献   

5.
The leucine/isoleucine/valine-binding protein (LIVBP or LivJ) serves as the primary high-affinity receptor of the Escherichia coli ABC-type transporter for the three aliphatic amino acids. The first structure of LIVBP determined previously without bound ligand showed a molecule comprised of two domains which are far apart and bisected by a wide open, solvent-accessible cleft. Here we report the crystal structures of another ligand-free state and three complexes with the aliphatic amino acids. In the present ligand-free structure, the two domains are farther apart. In the three very similar complex structures, the two domains are in close proximity, and each desolvated ligand is completely engulfed in the cleft and bound by both domains. The two different ligand-free structures, combined with those of the very similar ligand-bound structures, indicate the trajectory and backbone torsion angle changes of the hinges that accompany domain closure and play crucial functional roles. The amino acids are bound by polar and nonpolar interactions, occurring predominantly in one domain. Consistent with the protein specificity, the aliphatic side chains of the ligands lie in a hydrophobic pocket fully formed following domain or cleft closure. Comparison of the structures of LIVBP with several different binding proteins indicates no correlations between the magnitudes of the hinge-bending angles and the protein masses, the ligand sizes, or the number of segments connecting the two domains. Results of normal-mode analysis and molecular dynamics simulations are consistent with the trajectory and intrinsic flexibility of the interdomain hinges and the dominance of one domain in ligand binding in the open state.  相似文献   

6.
7.
Metabotropic glutamate receptors (mGluRs) belong to the family 3 of G-protein-coupled receptors. On these proteins, agonist binding on the extracellular domain leads to conformational changes in the 7-transmembrane domains required for G-protein activation. To elucidate the structural features that might be responsible for such an activation mechanism, we have generated models of the amino terminal domain (ATD) of type 4 mGluR (mGlu4R). The fold recognition search allowed the identification of three hits with a low sequence identity, but with high secondary structure conservation: leucine isoleucine valine-binding protein (LIVBP) and leucine-binding protein (LBP) as already known, and acetamide-binding protein (AmiC). These proteins are characterized by a bilobate structure in an open state for LIVBP/LBP and a closed state for AmiC, with ligand binding in the cleft. Models for both open and closed forms of mGlu4R ATD have been generated. ACPT-I (1-aminocyclopentane 1,3,4-tricarboxylic acid), a selective agonist, has been docked in the two models. In the open form, ACPT-I is only bound to lobe I through interactions with Lys74, Arg78, Ser159, and Thr182. In the closed form, ACPT-I is trapped between both lobes with additional binding to Tyr230, Asp312, Ser313, and Lys317 from lobe II. These results support the hypothesis that mGluR agonists bind a closed form of the ATDs, suggesting that such a conformation of the binding domain corresponds to the active conformation.  相似文献   

8.
Structural studies of the streptavidin binding loop.   总被引:7,自引:5,他引:2       下载免费PDF全文
The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.  相似文献   

9.
We have investigated the similarities and differences in the computed dynamic fluctuations exhibited by six members of a protein fold family with a coarse-grained Gaussian network model. Specifically, we consider the cofactor binding fragment of CysB; the lysine/arginine/ornithine-binding protein (LAO); the enzyme porphobilinogen deaminase (PBGD); the ribose-binding protein (RBP); the N-terminal lobe of ovotransferrin in apo-form (apo-OVOT); and the leucine/isoleucine/valine-binding protein (LIVBP). All have domains that resemble a Rossmann fold, but there are also some significant differences. Results indicate that similar global dynamic behavior is preserved for the members of a fold family, and that differences usually occur in regions only where specific function is localized. The present work is a computational demonstration that the scaffold of a protein fold may be utilized for diverse purposes. LAO requires a bound ligand before it conforms to the large-scale fluctuation behavior of the three other members of the family, CysB, PBGD, and RBP, all of which contain a substrate (cofactor) at the active site cleft. The dynamics of the ligand-free enzymes LIVBP and apo-OVOT, on the other hand, concur with that of unliganded LAO. The present results suggest that it is possible to construct structure alignments based on dynamic fluctuation behavior.  相似文献   

10.
11.
Bug proteins form a large family of periplasmic solute-binding proteins well represented in beta-proteobacteria. They adopt a characteristic Venus flytrap fold with two globular domains bisected by a ligand-binding cleft. The structures of two liganded Bug proteins have revealed that the family is specific for carboxylated solutes, with a characteristic mode of binding involving two highly conserved beta strand-beta turn-alpha helix motifs originating from each domain. These two motifs form hydrogen bonds with a carboxylate group of the ligand, both directly and via conserved water molecules, and have thus been termed the carboxylate pincers. In both crystallized Bug proteins, the ligands were found enclosed between the two domains and inaccessible to solvent, suggesting an inter-domain hinge-bending motion upon ligand binding. We report here the first structures of an open, unliganded Bug protein and of the same protein with a citrate ion bound in the open cavity. One of the ligand carboxylate groups is bound to one half of the carboxylate pincers by the beta strand-beta turn-alpha helix motif from domain 1, and the citrate ion forms several additional interactions with domain 1. The ligand is accessible to solvent and has very few contacts with domain 2. In this open, liganded structure, the second part of the carboxylate pincers originating from domain 2 is not stabilized by ligand binding, and a loop replaces the beta turn. In the unliganded structure, both motifs of the carboxylate pincers are highly mobile, and neither of the two beta turns is formed. Thus, ligand recognition is performed by domain 1, with the carboxylate group serving as an initial anchoring point. Stabilization of the closed conformation requires proper interactions to be established with domain 2, and thus domain 2 discriminates between productively and non-productively bound ligands.  相似文献   

12.
13.
Lysozyme from T4 bacteriophage is comprised of two domains that are both involved in binding substrate. Although wild-type lysozyme has been exclusively crystallized in a closed form that is similar to the peptidoglycan-bound conformation, a more open structure is thought to be required for ligand binding. To determine the relative arrangement of domains within T4 lysozyme in the solution state, dipolar couplings were measured in several different dilute liquid crystalline media by solution NMR methods. The dipolar coupling data were analyzed with a domain orientation procedure described previously that utilizes high- resolution X-ray structures. The cleft between the domains is significantly larger in the average solution structure than what is observed in the X-ray structure of the ligand-free form of the protein (approximately 17 degrees closure from solution to X-ray structures). A comparison of the solution domain orientation with X-ray-derived structures in the protein data base shows that the solution structure resembles a crystal structure obtained for the M6I mutant. Dipolar couplings were also measured on the lysozyme mutant T21C/T142C, which was oxidized to form an inter-domain disulfide bond (T4SS). In this case, the inter-domain solution structure was found to be more closed than was observed in the crystal (approximately 11 degrees). Direct refinement of lysozyme crystal structures with the measured dipolar couplings using the program CNS, establishes that this degree of closure can be accommodated whilst maintaining the inter-domain cystine bond. The differences between the average solution conformations obtained using dipolar couplings and the crystal conformations for both forms of lysozyme investigated in this study illustrate the impact that crystal packing interactions can have on the arrangement of domains within proteins and the importance of alternative methods to X-ray crystallography for evaluating inter-domain structure.  相似文献   

14.
Sherman DB  Zhang S  Pitner JB  Tropsha A 《Proteins》2004,56(4):828-838
Many proteins change their conformation upon ligand binding. For instance, bacterial periplasmic binding proteins (bPBPs), which transport nutrients into the cytoplasm, generally consist of two globular domains connected by strands, forming a hinge. During ligand binding, hinge motion changes the conformation from the open to the closed form. Both forms can be crystallized without a ligand, suggesting that the energy difference between them is small. We applied Simplicial Neighborhood Analysis of Protein Packing (SNAPP) as a method to evaluate the relative stability of open and closed forms in bPBPs. Using united residue representation of amino acids, SNAPP performs Delaunay tessellation of the protein, producing an aggregate of space-filling, irregular tetrahedra with nearest neighbor residues at the vertices. The SNAPP statistical scoring function is derived from log-likelihood scores for all possible quadruplet compositions of amino acids found in a representative subset of the Protein Data Bank, and the sum of the scores for a given protein provides the total SNAPP score. Results of scoring for bPBPs suggest that in most cases, the unliganded form is more stable than the liganded form, and this conclusion is corroborated by similar observations of other proteins undergoing conformation changes upon binding their ligands. The results of these studies suggest that the SNAPP method can be used to predict the relative stability of accessible protein conformations. Furthermore, the SNAPP method allows delineation of the role of individual residues in protein stabilization, thereby providing new testable hypotheses for rational site-directed mutagenesis in the context of protein engineering.  相似文献   

15.
Agonist-induced conformational changes in the ligand-binding domains (LBD) of glutamate receptor ion channels provide the driving force for molecular rearrangements that mediate channel opening and subsequent desensitization. The resulting regulated transmembrane ion fluxes form the basis for most excitatory neuronal signaling in the brain. Crystallographic analysis of the GluR2 LBD core has revealed a ligand-binding cleft located between two lobes. Channel antagonists stabilize an open cleft, whereas agonists stabilize a closed cleft. The crystal structure of the apo form is similar to the antagonist-bound, open state. To understand the conformational behavior of the LBD in the absence of crystal lattice constraints, and thus better to appreciate the thermodynamic constraints on ligand binding, we have undertaken a solution x-ray scattering study using two different constructs encoding either the core or an extended LBD. In agreement with the GluR2 crystal structures, the LBD is more compact in the presence of agonist than it is in the presence of antagonist. However, the time-averaged conformation of the ligand-free core in solution is intermediate between the open, antagonist-bound state and the closed, agonist-bound state, suggesting a conformational equilibrium. Addition of peptide moieties that connect the core domain to the other functional domains in each channel subunit appears to constrain the conformational equilibrium in favor of the open state.  相似文献   

16.
This study identifies dynamical properties of maltose-binding protein (MBP) useful in unveiling active site residues susceptible to ligand binding. The described methodology has been previously used in support of novel topological techniques of persistent homology and statistical inference in complex, multi-scale, high-dimensional data often encountered in computational biophysics. Here we outline a computational protocol that is based on the anisotropic elastic network models of 14 all-atom three-dimensional protein structures. We introduce the notion of dynamical distance matrices as a measure of correlated interactions among 370 amino acid residues that constitute a single protein. The dynamical distance matrices serve as an input for a persistent homology suite of codes to further distinguish a small subset of residues with high affinity for ligand binding and allosteric activity. In addition, we show that ligand-free closed MBP structures require lower deformation energies than open MBP structures, which may be used in categorization of time-evolving molecular dynamics structures. Analysis of the most probable allosteric coupling pathways between active site residues and the protein exterior is also presented.  相似文献   

17.
The ribose-binding protein (RBP) is a sugar-binding bacterial periplasmic protein whose function is associated with a large allosteric conformational change from an open to a closed conformation upon binding to ribose. The crystal structures of RBP in open and closed conformations have been solved. It has been hypothesized that the open and closed conformations exist in a dynamic equilibrium in solution, and that sugar binding shifts the population from open conformations to closed conformations. Here, we study by computer simulations the thermodynamic changes that accompany this conformational change, and model the structural changes that accompany the allosteric transition, using umbrella sampling molecular dynamics and the weighted histogram analysis method. The open state is comprised of a diverse ensemble of conformations; the open ribose-free X-ray crystal conformations being representative of this ensemble. The unligated open form of RBP is stabilized by conformational entropy. The simulations predict detectable populations of closed ribose-free conformations in solution. Additional interdomain hydrogen bonds stabilize this state. The predicted shift in equilibrium from the open to the closed state on binding to ribose is in agreement with experiments. This is driven by the energetic stabilization of the closed conformation due to ribose-protein interactions. We also observe a significant population of a hitherto unobserved ribose-bound partially open state. We believe that this state is the one that has been suggested to play a role in the transfer of ribose to the membrane-bound permease complex.  相似文献   

18.
Analysis of changes in the dynamics of protein domains on ligand binding is important in several aspects: for the understanding of the hierarchical nature of protein folding and dynamics at equilibrium; for analysis of signal transduction mechanisms triggered by ligand binding, including allostery; for drug design; and for construction of biosensors reporting on the presence of target ligand in studied media. In this work we use the recently developed HCCP computational technique for the analysis of stabilities of dynamic domains in proteins, their intrinsic motions and of their changes on ligand binding. The work is based on comparative studies of 157 ligand binding proteins, for which several crystal structures (in ligand-free and ligand-bound forms) are available. We demonstrate that the domains of the proteins presented in the Protein DataBank are far more robust than it was thought before: in the majority of the studied proteins (152 out of 157), the ligand binding does not lead to significant change of domain stability. The exceptions from this rule are only four bacterial periplasmic transport proteins and calmodulin. Thus, as a rule, the pattern of correlated motions in dynamic domains, which determines their stability, is insensitive to ligand binding. This rule may be the general feature for a vast majority of proteins.  相似文献   

19.
The periplasmic maltose-binding protein (MBP) of Escherichia coli is the recognition component of the maltose chemoreceptor and of the active transport system for maltose. It interacts with the Tar chemotactic signal transducer and the integral cytoplasmic-membrane components (the MalF and MalG proteins) of the maltose transport system. Maltose binds in a cleft between the globular N-terminal and C-terminal domains of MBP, which are connected by a moveable hinge. The two domains undergo a large motion relative to one another as the protein moves from the open, unbound state to the closed, ligand-bound state. We generated, by doped-primer mutagenesis, amino acid substitutions that specifically disrupt the chemotactic function of MBP. These substitutions cluster in two well-defined regions that are nearly contiguous on the surface of MBP in its closed conformation. One region is in the N-terminal domain and one is in the C-terminal domain. The distance between the two regions is expected to change substantially as the protein goes from the open to the closed form. These results support a model in which ligand binding brings two recognition sites on MBP into the proper spatial relationship to interact with complementary sites on Tar. Mutations in MBP that appear to cause defects in interaction with MalF and MalG are distributed differently from mutations that primarily affect maltose taxis. We conclude that the regions of MBP that contact Tar and those that contact MalF and MalG are adjacent on the face of the protein opposite the hinge connecting the two domains and that those regions are largely, although perhaps not entirely, distinct.  相似文献   

20.
Spectroscopic methods were used to monitor the unfolding of the leucine specific (LS) and the leucine-isoleucine-valine (LIV) binding proteins. Our studies indicate that ligand-free protein undergoes a simple two-state unfolding, whereas the protein-ligand complex undergoes a three-state unfolding model. Ligand binding causes significant stabilization of both proteins. There is correlation between ligand hydrophobicity and protein stabilization: the most hydrophobic ligand, isoleucine, causes the most significant stabilization of LIV protein. A disulfide bond present in N-domain of both proteins makes a large contribution to the protein stability of these periplasmic binding receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号