首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacteriophage T7 tail complex consists of a conical tail-tube surrounded by six kinked tail-fibers, which are oligomers of the viral protein gp17 (Mr 61,400). We have derived a molecular model for the tail-fiber by integrating secondary structure predictions with ultrastructural information obtained by correlation averaging of electron micrographs of negatively stained tail complexes. This model has been further refined by high-resolution scanning transmission electron microscopy of purified fibers, both negatively stained and unstained. Mass measurements made from the latter images establish that the fiber is a trimer of gp17. The proximal half-fiber is a uniform rod, about 2.0 nm in diameter and 16.4 nm long, which we infer to be a triple-stranded coiled-coil, containing three copies of an alpha-helical domain of about 117 residues, starting at Phe151. The distal half-fiber is 15.5 nm long, and is made up of four globules, 3.1 to 4.8 nm in diameter, in rigid linear array: it contains the carboxy-terminal halves (residues approximately 268 to 553) of the constituent gp17 chains, arranged with 3-fold symmetry around its long axis. The amino-terminal domains (residues 1 to 149) link the fiber to the tail-tube. We conclude that the three gp17 chains are quasi-equivalent in the proximal half-fiber, equivalent in the distal half-fiber, and non-equivalent in the kink region that separates the two half-fibers: such localized non-equivalence may represent a general mechanism for the formation of kinked joints in segmented homo-oligomeric proteins.  相似文献   

2.
M. Snyder  W. B. Wood 《Genetics》1989,122(3):471-479
Gene 37 of T4 encodes the major subunit of the distal half of the tail fiber. The distal tip of the fiber, comprised of the carboxy-terminal ends of two molecules of gene 37 product (gp37), carries the principal determinant of the phage host range. The gp37 carboxyl termini recognize the bacterial surface during infection, and, in addition, include a site required for interaction with the product of gp38 during distal half-fiber assembly. In the absence of interaction with gp38, gp37 polypeptides do not dimerize. Eleven temperature-sensitive mutants with defects located near the promoter-distal end of gene 37 were tested at nonpermissive temperatures for production of an antigen that is diagnostic of distal half-fiber assembly. Six of the mutations prevent distal half-fiber assembly. The other five allow assembly of distal half fibers, which combine with proximal half fibers and attach to phage particles, but the resulting phage do not adsorb to bacteria. These two classes of mutations define two adjacent but separate genetic regions, corresponding to two different functional domains in gp37. These two regions and the neighboring gene 38 comprise a functional unit that can be considered as a host-range "cassette," with features that are strikingly similar to corresponding functional units in other unrelated as well as related phages.  相似文献   

3.
The wac gene product (gpwac) or fibritin of bacteriophage T4 forms the six fibers that radiate from the phage neck. During phage morphogenesis these whiskers bind the long tail fibers (LTFs) and facilitate their attachment to the phage baseplate. After the cell lysis, the gpwac fibers function as part of an environmental sensing device that retains the LTFs in a retracted configuration and thus prevents phage adsorption in unfavorable conditions. A comparative analysis of the sequences of 5 wac gene orthologs from various T4-type phages reveals that the approximately 50-amino-acid N-terminal domain is the only highly conserved segment of the protein. This sequence conservation is probably a direct consequence of the domain's strong and specific interactions with the neck proteins. The sequence of the central fibrous region of gpwac is highly plastic, with only the heptad periodicity of the coiled-coil structure being conserved. In the various gpwac sequences, the small C-terminal domain essential for initiation of the folding of T4 gpwac is replaced by unrelated sequences of unknown origin. When a distant T4-type phage has a novel C-terminal gpwac sequence, the phage's gp36 sequence that is located at the knee joint of the LTF invariably has a novel domain in its C terminus as well. The covariance of these two sequences is compatible with genetic data suggesting that the C termini of gpwac and gp36 engage in a protein-protein interaction that controls phage infectivity. These results add to the limited evidence for domain swapping in the evolution of phage structural proteins.  相似文献   

4.
Structure of the distal half of the bacteriophage T4 tail fiber   总被引:9,自引:0,他引:9  
Studies of T4 amber mutants defective in tail fiber assembly have allowed the antigens of the distal half of the T4 tail fiber to be divided into two classes, called B and C. Only a few of the antibodies directed against these antigens cross-react with the related phage, T2. By adsorbing these cross-reactive antigens, it has been possible to produce a T4-specific anti-BC serum, AS1.The product of gene 37, P37, is the major protein in the distal half-fiber. A series of T2-T4 hybrid phage has been isolated which carry part of P37 from T2 and part from T4. By testing the ability of these hybrids to block the activity of AS1, it has been possible to divide the C antigen into 4 or 5 subclasses which have different specificities and are determined by different parts of P37.Observation of the tail fiber-antibody complexes formed by these hybrids and AS1 has allowed a determination of the topology of P37 in the assembled fiber. It is oriented linearly with its N-terminus near the joint between the two half-fibers and its C-terminus near the tip of the fiber. These observations lead to a simple model for the structure of the distal half-fiber.  相似文献   

5.
As a charge pattern recognition molecule, human C1q can bind a range of immunoglobulin and non-immunoglobulin ligands via its carboxy-terminal globular domain and activate the classical complement pathway. Each globular domain has a heterotrimeric organization, composed of the carboxy-terminal halves of one A (ghA), one B (ghB), and one C (ghC) chain. Recently, we have found that the recombinant forms of individual ghA, ghB and ghC bind differentially to IgG, IgM, gp41 peptide 601-613 of human immunodeficiency virus-1 (HIV-1), gp21 peptide 400-429 of human T cell lymphotrophic virus-I (HTLV-I), beta-amyloid peptide, and apoptotic cells, suggesting a modular organization of the globular domain. This paper examines the interaction of ghA, ghB and ghC with two known C1q ligands: Klebsiella pneumoniae porin OmpK36 and salivary agglutinin. In addition, we have used a panel of recombinant single-chain antibodies (scFv) specific for ghA, ghB and ghC in order to map sites on the heterotrimeric globular domain which are likely to interact with IgG1, IgG3, IgM, OmpK36, salivary agglutinin and gp41 loop peptide. The combined use of recombinant ghA, ghB, ghC and single-chain antibodies has revealed at least three ligand-binding sites on the globular domain of C1q: one is IgG- and OmpK36-specific, the second (IgM-binding site) is most likely overlapping with IgG/OmpK36 binding site, and the third (the gp41-binding site) seems to be located at the junction between the collagen and globular domains.  相似文献   

6.
Fibulin-2 is a novel extracellular matrix protein frequently found in close association with microfibrils containing either fibronectin or fibrillin. The entire protein and its predicted domains were obtained as recombinant products and examined by ultracentrifugation and electron microscopy. This demonstrated a disulfide-linked homodimer of 175 kDa subunits. Partial reduction to monomers identified specifically an odd Cys574 residue responsible for dimer formation in one of three anaphylatoxin-like modules that constitute the central globular domain I (13 kDa) of fibulin-2. Furthermore, a Cys574-Ser mutation abolished disulfide connection but not non-covalent dimerization of fibulin-2. The C-terminal region (85 kDa) was shown to represent a 35-nm-long rod consisting of 11 calcium-binding EGF-like modules (domain II) and a small terminal globe (domain III). The unique N-terminal domain N (55 kDa) was also rod-shaped (approximately 38 nm) and rich in galactosamine indicating extensive O-glycosylation. A dimer model is proposed indicating mainly a rod-like shape of 80 nm length based on an anti-parallel association of two subunits through their domains I. This model also implies alignment of domains II and N between different subunits. This was demonstrated by surface plasmon resonance assay which showed a distinct interaction between domains N and II with a Kd of approximately 0.7 microM.  相似文献   

7.
Topology of the products of the genes 34, 35, 36 and 37 of the bacteriophage T4D long tail fibers were determined with the aid of monospecific antibodies. The antibodies against gene product 34 were the only to interact with the proximal part of long tail fibers, but the distal part bound the antibodies against 35, 36 and 37. Product of the gene 35 is located at the joint-site with the distal part and binds the distance not more than 75 A long. Gene product 36 is located between these of 35 and 37 and occupy the region about 150 A. The capability of the antibodies obtained against the above-mentioned proteins were tested ot bind with long tail fibers diagnostic phages DDVIh+ and DDVIh Shigella disentheriae. We could'nt mark any difference in binding of the antibodies against gene 34, 35 and 36 product with DDVI phages and T4D. The distal part of the fibers of DDVIh bound the antibodies against product of gene 37 as T4D. Nevertheless DDVIh+ possesses only few antigenic sites relative to product of gene 37 of T4. The changes in the distal part of long tail fibers of h-strain DDVI may lead to the broadening of the host specifity of this virus.  相似文献   

8.
9.
Adsorption of T4 bacteriophage to the Escherichia coli host cell is mediated by six long and six short tail fibres. After at least three long tail fibres have bound, short tail fibres extend and bind irreversibly to the core region of the host cell lipopolysaccharide (LPS), serving as inextensible stays during penetration of the cell envelope by the tail tube. The short tail fibres consist of a parallel, in-register, trimer of gene product 12 (gp12). The 1.9 A crystal structure of a heat and protease-stable fragment of gp12 reveals three new folds: a central right-handed triple beta-helix, a globular C-terminal domain containing a beta-sandwich and an N-terminal beta-structure reminiscent of but different from the adenovirus triple beta-spiral. The centre of the C-terminal domain shows weak homology to gp11, a trimeric protein connecting the short fibre to the base-plate, suggesting that the trimerisation motifs of gp11 and gp12 are similar. Repeating sequence motifs suggest that the N-terminal beta-structure extends further towards the N terminus and is conserved in the long tail fibre proteins gp34 and gp37.  相似文献   

10.
Summary Genes (g) 36 and 37 code for the proteins of the distal half of the long tail fibers of phage T4, gene product (gp) 35 links the distal half to the proximal half of this fiber. The receptor, lipopolysaccharide, most likely is recognized by gp37. Using as probe a restriction fragment consisting of most of g36 and g37 of phage T4 the genes corresponding to g35, g36, and g37 of phages T2 and K3 (using the E. coli outer membrane proteins OmpF and OmpA, respectively, as receptors) have been cloned into plasmid pUC8. Partial DNA sequences of g37 of phage K3 have been determined. One area, corresponding to residues 157 to 210 of the 1026 residue gp37 of phage T4, codes for an identical sequence in phage K3. Another area corresponds to residues 767 to 832 of the phage T4 sequence. Amino acid residues 767 to 832 of the phage T4 sequence are almost identical in both phage proteins while the remainder is rather different. DNAs of T2, T4, T6, another T-even type phage using protein Tsx as a receptor, and 10 different T-even type phages using the OmpA protein as a receptor have been hybridized with restriction fragments covering various parts of the g37 area of phage K3. With probably only one exception all of the 13 phages tested possess unique genes 37 and within the majority of these, sequences highly homologous to parts of g37 of K3 are present in a mosaic type fashion. Other regions of these genes 37 did not show any homology with the K3 probes; in case of the OmpA specific phage M1 absence of homology was evident in most of its g37 even including the area that should serve for recognition of the cellular receptor. In sharp contrast to this situation it was found that a major part of the gene (g23) coding for the major capsid protein is rather highly conserved in all phages studied. The extreme variability in sequences existing in genes 37 might be a consequence of phages during evolution being able to more or less drastically change their receptor specifities.  相似文献   

11.
T20 (Fuzeon), a novel anti-human immunodeficiency virus (HIV) drug, is a peptide derived from HIV-1 gp41 C-terminal heptad repeat (CHR). Its mechanism of action has not yet been defined. We applied Pepscan strategy to determine the relationship between functional domains and mechanisms of action of five 36-mer overlapping peptides with a shift of five amino acids (aa): CHR-1 (aa 623-658), C36 (aa 628-663), CHR-3 (aa 633-668), T20 (aa 638-673), and CHR-5 (aa 643-678). C36 is a peptide with addition of two aa to the N terminus of C34. Peptides CHR-1 and C36 contain N-terminal heptad repeat (NHR)- and pocket-binding domains. They inhibited HIV-1 fusion by interacting with gp41 NHR, forming stable six-helix bundles and blocking gp41 core formation. Peptide T20 containing partial NHR- and lipid-binding domains, but lacking pocket-binding domain, blocked viral fusion by binding its N- and C-terminal sequences with gp41 NHR and cell membrane, respectively. Peptide CHR-3, which is located in the middle between C36 and T20, overlaps >86% of the sequences of these two peptides, and lacks pocket- and lipid-binding domains, exhibited marginal anti-HIV-1 activity. These results suggest that T20 and C36 contain different functional domains, through which they inhibit HIV-1 entry with distinct mechanisms of action. The multiple functional domains in gp41 CHR and their binding partners may serve as targets for rational design of new anti-HIV-1 drugs and vaccines.  相似文献   

12.
Blood coagulation factor VIII is a large glycoprotein that circulates in plasma at relative low concentration (0.1 microgram/ml). It consists of a heterogeneous mixture of a series heavy-chain peptides (90-200 kDa), each associated with a light chain of 80 kDa. To gain insight into the physical properties of the protein, we have characterized purified human factor VIII by electron microscopy and rotary shadowing. Electron microscopy of rotary shadowed factor VIII molecules showed predominantly a single globular domain structure, with a somewhat asymmetric shape, while two-domain structures were also encountered. The overall dimensions of the globular domains ranged from 4 x 6 nm to 8 x 12 nm. EDTA treatment of factor VIII reduced the overall dimensions (2.5 x 5 nm to 6 x 10 nm) while treatment with thrombin reduced the dimensions to a small extent. In complexes with von Willebrand factor, factor VIII appeared localized at the globular domains of von Willebrand factor multimers. In addition, incubation of factor VIII with Staphylococcus aureus V8 protease fragments SpII and SpIII revealed only binding to the globular domains of SpIII. In this study, the first morphological characterization of human factor VIII is presented, together with its direct localization on von Willebrand factor multimers.  相似文献   

13.
Hypothetical lambda protein ORF314 shows significant homology with the carboxyl end of phage T4 tail-fiber protein gp37. Homology can also be demonstrated between hypothetical lambda protein ORF194 and a fragment of bacteriophage T4 protein gp38. This sequence homology is also reflected in the genomic sequences of these two phages.  相似文献   

14.
Irreversible binding of T-even bacteriophages to Escherichia coli is mediated by the short tail fibres, which serve as inextensible stays during DNA injection. Short tail fibres are exceptionally stable elongated trimers of gene product 12 (gp12), a 56 kDa protein. The N-terminal region of gp12 is important for phage attachment, the central region forms a long shaft, while a C-terminal globular region is implicated in binding to the bacterial lipopolysaccharide core. When gp12 was treated with stoichiometric amounts of trypsin or chymotrypsin at 37 degrees C, an N-terminally shortened fragment of 52 kDa resulted. If the protein was incubated at 56 degrees C before trypsin treatment at 37 degrees C, we obtained a stable trimeric fragment of 3 x 33 kDa lacking residues from both the N- and C-termini. Apparently, the protein unfolds partially at 56 degrees C, thereby exposing protease-sensitive sites in the C-terminal region and extra sites in the N-terminal region. Well-diffracting crystals of this fragment could be grown. Our results indicate that gp12 carries a stable central region, consisting of the C-terminal part of the shaft and the attached N-terminal half of the globular region. Implications for structure determination of the gp12 protein and its folding are discussed.  相似文献   

15.
Guo J  Cheng H  Zhao S  Yu L 《FEBS letters》2006,580(2):581-584
Here, we report the identification of a novel domain--GG (domain in KIAA1199, FAM3, POMGnT1 and Tmem2 proteins, with two well-conserved glycine residues), present in eukaryotic FAM3 superfamily (FAM3A, FAM3B, FAM3C and FAM3D), POMGnT1 (protein O-linked mannose beta-1,2-N-acetylglucosaminyltransferase), TEM2 proteins as well as phage gp35 proteins. GG domain has been revealed to be implicated in muscle-eye-brain disease and non-syndromic hearing loss. The presence of GG domain in Bacteriophage gp35 hinge connector of long tail fiber might reflect the horizontal gene transfer from organisms. And we proposed that GG domain might function as important structural element in phage LTF.  相似文献   

16.
The packaging of double-stranded genomic DNA into some viral and all bacteriophage capsids is driven by powerful molecular motors. In bacteriophage T4, the motor consists of the portal protein assembly composed of twelve copies of gene product 20 (gp20, 61 kDa) and an oligomeric terminase complex composed of gp16 (18 kDa) and gp17 (70 kDa). The packaging motor drives the 171-kbp T4 DNA into the capsid utilizing the free energy of ATP hydrolysis. Evidence suggests that gp17 is the key component of the motor; it exhibits ATPase, nuclease, and in vitro DNA-packaging activities. The N- and C-terminal halves of gp17 were expressed and purified to homogeneity and found to have ATPase and nuclease activities, respectively. The N-terminal domain exhibited 2-3-fold higher Kcat values for gp16-stimulated ATPase than the full-length gp17. Neither of the domains, individually or together, exhibited in vitro DNA-packaging activity, suggesting that communication between the domains is essential for DNA packaging. The domains, in particular the C-terminal domain or a mixture of both the N- and C-terminal domains, inhibited in vitro DNA packaging that is catalyzed by full-length gp17. In conjunction with genetic evidence, these data suggest that the domains compete with the full-length gp17 for binding sites on the portal protein. A model for the assembly of the T4 DNA-packaging machine is presented.  相似文献   

17.
Cultured chick embryo skin fibroblasts release a major component with a native molecular mass of about 1 MDa, which resolves into three polypeptide bands of about 300, 350 and 600 kDa upon reduction. We report here the purification of this oligomeric protein and show, by means of polyclonal and monoclonal antibodies, that its three polypeptide constituents are closely related. The 600-kDa polypeptide is likely to be a dimer of two smaller subunits which are cross-linked by non-reducible bonds. By electron microscopy, isolated oligomeric molecules exhibit a novel cruciform structure with a large central globular domain. One arm has the shape of a thin rod about 70 nm in length. The three other arms are thicker, longer (90 nm) and flexible, and carry a prominent double globule at their distal ends. Collagenase treatment of the oligomeric fibroblast protein yields two resistant fragments of about 270 kDa and 320 kDa. The intact 350-kDa and 600-kDa (but not the 300-kDa) polypeptides are chondroitinase sensitive and labeled by metabolic incorporation of [35S]sulfate; collagenase treatment does not remove any [35S] sulfate. Hence, the intact fibroblast protein has glycosaminoglycan chains attached to its non-collagenous domain. Three amino acid sequences obtained from chymotryptic fragments of the fibroblast protein correspond to sequences predicted for chick type-XII collagen from its full-length cDNA [Yamagata, M., Yamada, K. M., Yamada, S. S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M. & Kimata, K. (1991) J. Cell Biol. 115, 209-221]. However, the novel fibroblast protein described here differs significantly from previously isolated forms of type-XII collagen: its subunits are larger by one third, and it is a proteoglycan.  相似文献   

18.
Highlights? The ubiquitin ligase gp78 recruits ubiquitinated substrates via its CUE domain ? gp78CUE:Ub complex reveals a large set of specific interactions ? gp78CUE binds to both distal and proximal moities of diubiquitin in a similar fashion ? The gp78CUE domain binds to K48- and K63-linked diubiquitin equally well  相似文献   

19.
Laminin self-assembles into large polymers by a cooperative two-step calcium-dependent mechanism (Yurchenco, P. D., E. C. Tsilibary, A. S. Charonis, and H. Furthmayr. 1985. J. Biol. Chem. 260:7636-7644). The domain specificity of this process was investigated using defined proteolytically generated fragments corresponding to the NH2-terminal globule and adjacent stem of the short arm of the B1 chain (E4), a complex of the two short arms of the A and B2 chains attached to the proximal stem of a third short arm (E1'), a similar complex lacking the globular domains (P1'), and the distal half of the long arm attached to the adjacent portion of the large globule (E8). Polymerization, followed by an increase of turbidity at 360 nm in neutral isotonic TBS containing CaCl2 at 35 degrees C, was quantitatively inhibited in a concentration-dependent manner with laminin fragments E4 and E1' but not with fragments E8 and P1'. Affinity retardation chromatography was used for further characterization of the binding of laminin domains. The migration of fragment E4, but not of fragments E8 and P1', was retarded in a temperature- and calcium-dependent fashion on a laminin affinity column but not on a similar BSA column. These data are evidence that laminin fragments E4 and E1' possess essential terminal binding domains for the self-aggregation of laminin, while fragments E8 and P1' do not. Furthermore, the individual domain-specific interactions that contribute to assembly are calcium dependent and of low affinity.  相似文献   

20.
Veiga AS  Castanho MA 《The FEBS journal》2007,274(19):5096-5104
A small amino acid sequence (LWYIK) inside the HIV-1 gp41 ectodomain membrane proximal region (MPR) is commonly referred to as a cholesterol-binding domain. To further study this unique and peculiar property we have used fluorescence spectroscopy techniques to unravel the membrane interaction properties of three MPR-derived synthetic peptides: the membrane proximal region peptide-complete (MPRP-C) which corresponds to the complete MPR; the membrane proximal region peptide-short (MPRP-S), which corresponds to the last five MPR amino acid residues (the putative cholesterol-binding domain) and the membrane proximal region peptide-intermediate (MPRP-I), which corresponds to the MPRP-C peptide without the MPRP-S sequence. MPRP-C and MPRP-I membrane interaction is largely independent of the membrane phase. Membrane interaction of MPRP-S occurs for fluid phase membranes but not in gel phase membranes or cholesterol-containing bilayers. The gp41 ectodomain MPR may have a very specific function in viral fusion through the concerted and combined action of cholesterol-binding and non-cholesterol-binding domains (i.e. domains corresponding to MPRP-S and MPRP-I, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号