首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanosine is shown to dramatically alter the pigment phenotype of axolotls by suppressing melanization and enhancing the biosynthesis and deposition of purine-derived pigments. Phenotypic changes caused by guanosine are manifested by altered chromatophore differentiation patterns such that few black pigment cells (melanophores) differentiate (and those that do are punctate and necrotic in appearance), whereas the development of yellow (xanthophore) and reflecting (iridophore) pigment cells is enhanced. Mechanisms for changes in chromatophore differentiation, and thus pattern formation, are discussed, including the possibility that pigment cells may undergo transdifferentiation in vivo.  相似文献   

2.
The morphology and organization of chromatophores in the neotropical glass-frog, Centrolenella fleischmanni (family Centrolenidae), were studied with both light and electron microscopes. Four types of pigment cells are described in the dorsal skin. The fine structure of two chromatophores corresponds to the typical amphibian xanthophore and iridophore; one is similar to the unusual melanophore found in phyllomedusine hylids; the fourth cell type is unlike any chromatophore previously described. Pigment granules in the unusual chromatophore are moderately electron-dense and have an irregular shape, suggesting a fluid composition. This pigment appears to be laid down in organelles similar in appearance to pterinosomes. The organization of pigment cells in this species differs from that of other green, leaf-sitting frogs in that there are few discrete groups resembling “dermal chromatophore units.” It is suggested that the unusual new pigment cell contributes significantly to the overall green color of C. fleischmanni.  相似文献   

3.
Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from "off" to various degrees of "on", revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.  相似文献   

4.
A. G. Reaume  D. A. Knecht    A. Chovnick 《Genetics》1991,129(4):1099-1109
The rosy gene in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Mutants that have no enzyme activity are characterized by a brownish eye color phenotype reflecting a deficiency in the red eye pigment. Xanthine dehydrogenase is not synthesized in the eye, but rather is transported there. The present report describes the ultrastructural localization of XDH in the Drosophila eye. Three lines of evidence are presented demonstrating that XDH is sequestered within specific vacuoles, the type II pigment granules. Histochemical and antibody staining of frozen sections, as well as thin layer chromatography studies of several adult genotypes serve to examine some of the factors and genic interactions that may be involved in transport of XDH, and in eye pigment formation. While a specific function for XDH in the synthesis of the red, pteridine eye pigments remains unknown, these studies present evidence that: (1) the incorporation of XDH into the pigment granules requires specific interaction between a normal XDH molecule and one or more transport proteins; (2) the structural integrity of the pigment granule itself is dependent upon the presence of a normal balance of eye pigments, a notion advanced earlier.  相似文献   

5.
The effects of allopurinol (an inhibitor of the enzyme xanthine dehydrogenase (XDH] and the melanoid gene on pigment cell differentiation in the axolotl were examined by analyzing pigment components of the xanthophore (pterins). Pterin contents of skin extracts (70% ethanol) from wild type, allopurinol-treated and melanoid axolotls were determined by thin layer chromatography (TLC) and fluorometric scanning of TLC plates. Heights of peaks produced were used as a quantitative measure for pterin content. Results reveal that melanoid animals contain significantly reduced amounts of all seven pterins examined as compared with wild type animals. Allopurinol-treated animals have reduced levels of four pterins (xanthopterin, isoxanthopterin, biopterin and sepiapterin) as compared with the wild type. These findings suggest that the alterations in pterin biosynthetic pathways, either by drug-induced inhibition of XDH activity or by the melanoid gene, produce similar dramatic changes in pigment phenotype which are manifested by alterations in pigment cell differentiation.  相似文献   

6.
Three types of pigment cells were isolated and cultured from larval Rana pipiens, and their attachment, maintenance, and proliferation were examined in the presence of extra-cellular matrix constituents (ECMs) in primary cell culture. The initial profile of pigment cell types present on day 2 of culture reflects the relative attachment of the cells to the dishes. Changes in the numbers of cells present after day 2 reflects the influence of factors present in the culture media on the maintenance, proliferation, or detachment of each type of pigment cell. Fetal bovine serum (FBS) promoted melanophore expression, but inhibited iridophore expression. FBS had no effect on xanthophores. In contrast, ventral skin conditioned medium (VCM), which contains melanization inhibiting factor, strongly stimulated iridophore expression, while it markedly inhibited melanophore expression. VCM had little effect on xanthophores. Of the ECMs tested, collagen type I had no effect on pigment cells. Fibronectin slightly inhibited melanophore expression, while it moderately stimulated iridophores and xanthophores. The stimulatory effect of fibronectin was not as strong as that of FBS or VCM. Laminin was also tested; however, it did not allow pigment cells to attach to the dishes, at least under the culture conditions utilized. The results of these experiments are discussed in terms of the general mechanisms of pigment pattern formation.  相似文献   

7.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry.  相似文献   

8.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

9.
Allopurinol, a drug that inhibits the enzyme xanthine dehydrogenase (XDH), is known to cause hypermelanism in the axolotl. The hypermelanistic condition that results from allopurinol treatment is similar in most respects to the phenotype that results from the action of the melanoid (m) gene in axolotls. On the basis of structural and biochemical studies, it now seems clear that genetic and drug-induced hypermelanism are the same in the following ways. 1) Both types of melanism result in the production of more than normal amounts of melanin and more melanin-containing cells (melanophores). 2) In both cases the amount of pteridine-associated yellow pigment declines during development, and this is associated directly with fine structural changes that occur within the pigment organelles (pterinosomes) of yellow pigment cells (xanthophores). 3) In both cases the hypermelanistic condition results in the suppression of reflecting pigment cell (iridophore) differentiation. 4) Both conditions have now been linked directly to depressed levels of XDH activity. Thus both genetic and drug-induced hypermelanism result in alterations in the normal differentiation of all three pigment cell types and the subsequent disruption of normal pigment pattern formation. The possible significance of these findings with regard to factors known or suspected to direct the migration and/or differentiation of neural crest-derived pigment cells is discussed.  相似文献   

10.
Direct reception of light by chromatophores of lower vertebrates   总被引:3,自引:0,他引:3  
Rapid color changes of lower vertebrates are caused by the motile activities of pigment cells (chromatophores) present in the skin tissue. Chromatophore motility is generally regulated by neural and/or by endocrine systems. However, in some cases, light also induces pigment aggregation or dispersion directly, which suggests the existence of visual pigments in chromatophores. In fact, some opsins, including melanopsin, have been identified. This article reviews light-sensitive chromatophores of lower vertebrates. Photoreceptive molecules (visual pigments) and signal transduction of light via a GTP-binding protein (G protein) are also discussed.  相似文献   

11.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

12.
Guppy is a popular ornamental fish owing to its diverse body and fin coloration. More than 40 established color varieties have been selectively bred. The complementary DNAs for 2 enzymes that are involved in the de novo synthesis of pteridines and purines, which are important for the production of color pigments, were cloned from the caudal fin. Two cDNA isoforms for 6-pyruvoyl tetrahydropterin synthase (PTPS), with an open reading frame of 130 and 147 amino acids, respectively, were cloned from the Red Tail variety. The deduced amino acid sequence of the longer isoform shows an overall identity of about 65% to the mammalian PTPS sequences. The cDNA for xanthine dehydrogenase (XDH) was cloned from the Yellow Tail variety, and consists of an open reading frame of 1331 amino acids. Although it shows a higher overall identity to bovine aldehyde oxidase (AO; 54%) than to chicken XDH (51%), it has a NAD-binding domain that is specific to XDHs. Northern blot analysis indicated that both PTPS and XDH messenger RNAs were highly expressed in the liver, but absent in the muscle. In the caudal fins, guppy varieties with a higher proportion of xanthophores and erythrophores showed higher expression of PTPS, while XDH mRNA levels were too low to indicate obvious differential expression among the color guppy varieties. The results implied that high expression of PTPS is correlated with the biosynthesis of pteridines in the erythrophores and xanthophores, while the association between the putative guppy XDH with specific chromatophores is less clear.  相似文献   

13.
In Gecarcinus lateralis dopamine treatment results in dispersion of black and concentration of red pigments within chromatophores. These effects of dopamine on the migration of pigments can be blocked by the dopamine antagonist haloperidol. These results strongly indicate the presence of a dopamine receptor mediated system in this organism. Serotonin injections also result in the dispersion of black pigment; however, this effect cannot be blocked by haloperidol. Norepinephrine was found to be without effect on this pigment regulatory system. Injections of crude eyestalk extract results in pigment migration within the chromatophores in both stalked and destalked animals. Injection of the stable methionine enkephalin analog FK 33 824 into the organisms causes no observable effects on the pigment system. However, coinjection with eyestalk extract strongly potentiates the effect of the extract. This potentiation can be completely blocked by the opiate antagonist naloxone, thus indicating that an endogenous opioid system may be part of the overall regulation of pigmentation movement.  相似文献   

14.
Using immunostaining during early zebrafish embryogenesis, we report that the cranial and trunk neural crest expresses the paired box protein Pax7, thus revealing a novel neural crest marker in zebrafish. In the head, we show that Pax7 is broadly expressed in the cranial crest cells, which indicates that duplication of the paralogous group Pax3/7 at the origin of vertebrates included the conserved expression of Pax7 in the head neural crest of all of the vertebrates species studied so far. In the trunk, Pax7 recognizes both premigratory and migratory neural crest cells. Notably, we observed the expression of Pax7 during the development of melanophore, xanthophore and iridophore precursor cells. In contrast to the case of melanocyte precursors in birds, Pax7 showed overlapping expression with early melanin pigment. Finally, during the larva to adult transition, we show that pigment stem cells recapitulate the expression of Pax7.  相似文献   

15.
Pigment migration in the eyes of Austrolestes annulosus and Ischnura heterosticta cause pronounced colour changes which superficially resemble those of Odonata epidermal chromatophores. In both species, the migratory pigment is confined to the distal pigment cells of dorsal ommatidia. When the pigment is concentrated around the base of the crystalline cones, a dense layer of Tyndall blue bodies produce bright ‘blue phase’ colours. Distal migration of the pigment disrupts the Tyndall effect and produces ‘dark phase’ (grey-brown) colours. As in chromatophores, eye pigments consist of a mixture of xanthommatin and dihydroxanthommatin together with an additional pigment, possibly ommin A, not found in chromatophores.As with chromatophores, eye pigments respond to change in temperature only, change in light intensity having no effect. The change from blue to dark phase (at 8°C) occurs at the same rate as in chromatophores, whereas the reverse change (at 20°C) is significantly slower. Equilibrium colours at constant temperature are variable but significantly different from those of chromatophores at 12°C and above. There is no diurnal variation in responsiveness as is found in chromatophores.Isolated dark phase eyes or undamaged pieces of eye are able to change to blue phase after temperature increase. Isolated blue phase eyes show little response to temperature decrease, isolated undamaged pieces show no response. A temperature difference between the eyes of the same intact insect may result in minor colour differences. Ablation of the optic tract or of tissue posterior to the optic tract prevents normal colour change from blue to dark phase. The above results indicate that eye pigment cells are structurally similar to Odonata chromatophores and are under similar environmental and physiological control.  相似文献   

16.
Chromatic adaptation in crustaceans results from the differential distribution of colored pigment granules within their chromatophores consequent to cell signaling by neurosecretory peptides. However, the force transducing, mechanochemical protein motors responsible for granule translocation, and their molecular mechanisms of action, are not well understood. The present study uses immunocytochemical techniques and a motility assay in vitro to demonstrate that protein motors from the kinesin and myosin superfamilies are stably associated with membrane-bounded pigment granules in the red, ovarian chromatophores of the freshwater, palaemonid shrimp, Macrobrachium olfersii. Monoclonal antibodies against conventional kinesin heavy chain, and an anti-myosin whole serum, labeled pigment-containing fragments prepared from homogenates of chromatophores with fully dispersed or aggregated pigments: this finding infers a permanent association between the protein motors and the pigment granules, and suggests that such motors may be regulated while bound to their cargos. The pigment aggregator appears to be a myosin since the anti-myosin whole serum attenuated hormonally triggered pigment aggregation in the motility assay in vitro, and induced pigment hyper-dispersion in some chromatophores. Western blots of the chromatophore-containing, ovarian tissue homogenate demonstrated protein bands consistent with myosin II and myosin XII, either of which may be the pigment aggregator. This study provides the first direct evidence for myosin and kinesin protein motors directly and stably associated with pigment granules in crustacean chromatophores, and may represent the first successful isolation of myosin class XII.  相似文献   

17.
18.
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.  相似文献   

19.
The enzyme, xanthine dehydrogenase (XDH), has been examined in Ambystoma tigrinum nebulosum with respect to its role in pigmentation. It now seems probable that the melanoid gene (m) either codes directly for XDH or is somehow intimately connected with the normal function of this enzyme. Inhibition of XDH using the drug, allopurinol, results in animals which appear to be phenocopies of melanoid mutants as described for the Mexican axolotl (Ambystoma mexicanum). The effects of allopurinol in terms of specific pigmentary alterations were examined, and a new method for analyzing heterogeneous extracts of skin pigments (e.g., purines and pteridines) is presented. The significance of the link between XDH and melanism is discussed with emphasis on possible mechanisms of pigment induction and general applicability to biological systems.  相似文献   

20.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号