首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物膜中与脂双层结合的蛋白质称为膜蛋白.由于它们具有很大的疏水表面以及既亲水又疏水的两性特点致使其纯化与结晶都十分困难.在膜蛋白晶体生长系统中引入小分子去污剂与小的两性分子获得突破性进展.迄今为止,结晶出来的膜蛋白为数不多.其中只有光合细菌绿色红假单胞菌及球型红假单胞菌的反应中心得到3分辨率的晶体结构与解析.一系列膜蛋白形成二维晶体,可用电子显微镜与像重构技术获得三维结构信息.  相似文献   

2.
Internal deletions close to the C-terminus of the Escherichia coli penicillin binding protein 5 (PBP5, DacA) have defined the C-terminal 18 residues of the protein as essential for membrane binding. This C-terminal sequence is capable of forming a strongly amphiphilic alpha-helix. In this paper we show that the PBP5 amphiphilic helix is able to anchor the periplasmic TEM-beta-lactamase to the inner membrane. In addition, we have demonstrated that mature PBP5 (lacking the N-terminal signal sequence) possesses the ability to bind to the membrane from a soluble form of the protein, showing that translocation across the membrane is unnecessary for anchoring to be established.  相似文献   

3.
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.  相似文献   

4.
Crystallizing membrane proteins remains a challenging endeavor despite the increasing number of membrane protein structures solved by X-ray crystallography. The critical factors in determining the success of the crystallization experiments are the purification and preparation of membrane protein samples. Moreover, there is the added complication that the crystallization conditions must be optimized for use in the presence of detergents although the methods used to crystallize most membrane proteins are, in essence, straightforward applications of standard methodologies for soluble protein crystallization. The roles that detergents play in the stability and aggregation of membrane proteins as well as the colloidal properties of the protein-detergent complexes need to be appreciated and controlledbefore and during the crystallization trials. All X-ray quality crystals of membrane proteins were grown from preparations of detergent-solubilized protein, where the heterogeneous natural lipids from the membrane have been replaced by ahomogeneous detergent environment. It is the preparation of such monodisperse, isotropic solutions of membrane proteins that has allowed the successful application of the standard crystallization methods routinely used on soluble proteins. In this review, the issues of protein purification and sample preparation are addressed as well as the new refinements in crystallization methodologies for membrane proteins. How the physical behavior of the detergent, in the form of micelles or protein-detergent aggregates, affects crystallization and the adaptation of published protocols to new membrane protein systems are also addressed. The general conclusion is that many integral membrane proteins could be crystallized if pure and monodisperse preparations in a suitable detergent system can be prepared.In memory of Glenn D. Garavito.  相似文献   

5.
C-反应蛋白是动物体内一种典型的急性期反应蛋白。本文人工合成了两种可以与C-反应蛋白特异性结合的兼性分子作为C-反应蛋白的模型受体,以便进一步在脂单层膜表面上组装C-反应蛋白的二维晶体。作为第一步工作,本文研究了兼性分子的特性以及荧光光谱方法监测兼性分子与C-反应蛋白之间特异性相互作用。荧光光谱实验结果表明受体与C-反应的特异结合会引起荧光强度的下降。  相似文献   

6.
C-反应蛋白是动物体内一种典型的急性期反应蛋白,本文人工合成了两种可以与C-反应蛋白特异性结合的兼性分子作为C-反应蛋白的模型受体,以便进一步在脂单层膜表面上组装C-反应蛋白的二维晶体。作为第一步工作。本文研究了兼性分子的特性以及荧光光谱方法监测兼性分子与C-反应蛋白之间特异性相互作用。荧光光谱实验结果表明受体与C-反应的特异结合会引起荧光强度的下降。  相似文献   

7.
Membrane binding via C-terminal amphiphilic alpha-helical structure is a novel anchoring mechanism, which has been characterised in a number of prokaryotic carboxypeptidases. Here, we have used graphical and DWIH analyses to ascertain if a similar anchoring mechanism may be utilised by the Escherichia coli KpsE protein in its binding to the periplasmic face of the inner membrane. The results of these analyses have been compared to those obtained for similar analyses of the C-terminal sequences of E. coli penicillin-binding proteins (PBPs) PBP5 and PBP6 which, are known to function as amphiphilic alpha-helical membrane anchors, and of melittin, a known membrane-interactive toxin. We have also used FTIR spectroscopy and lipid phase transition temperature analysis to investigate the interaction of a peptide homologue of KpsE C-terminal region with membrane lipid. Our results suggest that the KpsE C-terminal sequence has the potential to form an amphiphilic alpha-helix and that this alpha-helix could feature in the membrane binding of the protein.  相似文献   

8.
Secretory carrier membrane proteins (SCAMPs) are integral membrane proteins found in secretory and endocytic carriers implicated to function in membrane trafficking. Using expressed sequence tag database and library screens and DNA sequencing, we have characterized several new SCAMPs spanning the plant and animal kingdoms and have defined a broadly conserved protein family. No obvious fungal homologue has been identified, however. We have found that SCAMPs share several structural motifs. These include NPF repeats, a leucine heptad repeat enriched in charged residues, and a proline-rich SH3-like and/or WW domain-binding site in the N-terminal domain, which is followed by a membrane core containing four putative transmembrane spans and three amphiphilic segments that are the most highly conserved structural elements. All SCAMPs are 32-38 kDa except mammalian SCAMP4, which is approximately 25 kDa and lacks most of the N-terminal hydrophilic domain of other SCAMPs. SCAMP4 is authentic as determined by Northern and Western blotting, suggesting that this portion of the larger SCAMPs encodes the functional domain. Focusing on SCAMP1, we have characterized its structure further by limited proteolysis and Western blotting with the use of isolated secretory granules as a uniformly oriented source of antigen and by topology mapping through expression of alkaline phosphatase gene fusions in Escherichia coli. Results show that SCAMP1 is degraded sequentially from the N terminus and then the C terminus, yielding an approximately 20-kDa membrane core that contains four transmembrane spans. Using synthetic peptides corresponding to the three conserved amphiphilic segments of the membrane core, we have demonstrated their binding to phospholipid membranes and shown by circular dichroism spectroscopy that the central amphiphilic segment linking transmembrane spans 2 and 3 is alpha-helical. In the intact protein, these segments are likely to reside in the cytoplasm-facing membrane interface. The current model of SCAMP1 suggests that the N and C termini form the cytoplasmic surface of the protein overlying a membrane core, which contains a functional domain located at the cytoplasmic interface with little exposure of the protein on the ectodomain.  相似文献   

9.
The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase.  相似文献   

10.
Structure determination at high resolution is actually a difficult challenge for membrane proteins and the number of membrane proteins that have been crystallized is still small and far behind that of soluble proteins. Because of their amphiphilic character, membrane proteins need to be isolated, purified and crystallized in detergent solutions. This makes it difficult to grow the well-ordered three-dimensional crystals that are required for high resolution structure analysis by X-ray crystallography. In this difficult context, growing crystals confined to two dimensions (2D crystals) and their structural analysis by electron crystallography has opened a new way to solve the structure of membrane proteins. However, 2D crystallization is one of the major bottlenecks in the structural studies of membrane proteins. Advances in our understanding of the interaction between proteins, lipids and detergents as well as development and improvement of new strategies will facilitate the success rate of 2D crystallization. This review deals with the various available strategies for obtaining 2D crystals from detergent-solubilized intrinsic membrane proteins. It gives an overview of the methods that have been applied and gives details and suggestions of the physical processes leading to the formation of the ordered arrays which may be of help for getting more proteins crystallized in a form suitable for high resolution structural analysis by electron crystallography.  相似文献   

11.
Protein stability is a crucial factor to consider when attempting to crystallize integral membrane proteins. Cubic phase, or in meso, lipid-bilayer crystallization media are thought to provide native-like environments that should facilitate membrane protein crystallization by helping to stabilize the native protein conformation for the duration of the crystallization process. While excellent crystals of bacteriorhodopsin (bR) and other Halobacterial rhodopsins have been obtained in lipid-bilayer gels formed with monoglycerides, success remains elusive in the general application of such media to other membrane proteins. Additionally, we have noted that some mutants of bR are highly unstable in gels formed with monoolein. Phosphatidylethanolamines (PE) and derivatives of PE represent another class of lipids that can form connected-bilayer gels. When wildtype bR and a labile bR mutant were reconstituted into this phospholipid gel, spectroscopy showed that the protein is both more stable and has improved conformational homogeneity as compared to gels formed using monoolein. In addition, we demonstrate that well-diffracting crystals of bR can be grown from a PE-based crystallization medium. Since most proteins lack a stability-indicating chromophore and other structure-based analytical techniques are poorly compatible with the lipid gel, we developed a generally-applicable spectroscopic technique based on the intrinsic fluorescence of tryptophan residues. This fluorescence assay makes possible the rapid evaluation of lipid gels as media for the crystallization of membrane proteins.  相似文献   

12.

Background

Protein crystallization is a slow process of trial and error and limits the amount of solved protein structures. Search of a universal heterogeneous nucleant is an effort to facilitate crystallizability of proteins.

Methodology

The effect of polystyrene nanospheres on protein crystallization were tested with three commercial proteins: lysozyme, xylanase, xylose isomerase, and with five research target proteins: hydrophobins HFBI and HFBII, laccase, sarcosine dimethylglycine N-methyltransferase (SDMT), and anti-testosterone Fab fragment 5F2. The use of nanospheres both in screening and as an additive for known crystallization conditions was studied. In screening, the addition of an aqueous solution of nanosphere to the crystallization drop had a significant positive effect on crystallization success in comparison to the control screen. As an additive in hydrophobin crystallization, the nanospheres altered the crystal packing, most likely due to the amphiphilic nature of hydrophobins. In the case of laccase, nanospheres could be used as an alternative for streak-seeding, which insofar had remained the only technique to produce high-diffracting crystals. With methyltransferase SDMT the nanospheres, used also as an additive, produced fewer, larger crystals in less time. Nanospheres, combined with the streak-seeding method, produced single 5F2 Fab crystals in shorter equilibration times.

Conclusions

All in all, the use of nanospheres in protein crystallization proved to be beneficial, both when screening new crystallization conditions to promote nucleation and when used as an additive to produce better quality crystals, faster. The polystyrene nanospheres are easy to use, commercially available and close to being inert, as even with amphiphilic proteins only the crystal packing is altered and the nanospheres do not interfere with the structure and function of the protein.  相似文献   

13.
One key to successful crystallization of membrane proteins is the identification of detergents that maintain the protein in a soluble, monodispersed state. Because of their hydrophobic nature, membrane proteins are particularly prone to forming insoluble aggregates over time. This nonspecific aggregation of the molecules reduces the likelihood of the regular association of the protein molecules essential for crystal lattice formation. Critical buffer components affecting the aggregation of membrane proteins include detergent choice, salt concentration, and presence of glycerol. The optimization of these parameters is often a time- and protein-consuming process. Here we describe a novel ultracentrifugation dispersity sedimentation (UDS) assay in which ultracentrifugation of very small (5 microL) volumes of purified, soluble membrane protein is combined with SDS-PAGE analysis to rapidly assess the degree of protein aggregation. The results from the UDS method correlate very well with established methods like size-exclusion chromatography (SEC), while consuming considerably less protein. In addition, the UDS method allows rapid screening of detergents for membrane protein crystallization in a fraction of the time required by SEC. Here we use the UDS method in the identification of suitable detergents and buffer compositions for the crystallization of three recombinant prokaryotic membrane proteins. The implications of our results for membrane protein crystallization prescreening are discussed.  相似文献   

14.
Knowledge of the conformations of a water‐soluble protein bound to a membrane is important for understanding the membrane‐interaction mechanisms and the membrane‐mediated functions of the protein. In this study we applied vacuum‐ultraviolet circular‐dichroism (VUVCD) and linear‐dichroism (LD) spectroscopy to analyze the conformations of α‐lactalbumin (LA), thioredoxin (Trx), and β‐lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural‐network analysis showed that these three proteins have characteristic helix‐rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence‐level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane‐binding proteins, which are difficult targets for X‐ray crystallography and nuclear magnetic resonance spectroscopy. Proteins 2016; 84:349–359. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Trypsin crystallization by membrane-based techniques   总被引:4,自引:0,他引:4  
To grow protein crystals is not an easy task; moreover, if we need to grow protein crystals with controlled shape, size, and size distribution, depending on their application, the mission becomes even harder. Membrane crystallization has been recognized as an interesting tool for growing protein crystals with enhanced crystallization kinetics, both in static and in forced solution flow configuration, without detrimental effects on crystal quality. In the present work, we have studied the membrane crystallization process of benzamidine inhibited trypsin from bovine pancreas (BPT), with ammonium sulphate (dissolved in Tris-HCl buffer, 0.1 M, pH 8.5), as precipitant agent. We have demonstrated that, by using the membrane crystallization technique, BPT crystals can be obtained in 24-48 h, in static configuration, and in 4-7 days, in a forced solution flow system, depending on the experimental conditions. Furthermore, the kinetics of BPT crystallization have been modulated, to control the morphological characteristics of the crystals produced, by an accurate selection of the operative parameters involved in the process. The active membrane surface and the flow rate of extraction solvent in quiescent configuration, and the solution velocity in forced convection solution experiments, were the parameters investigated. In this respect, membrane crystallization techniques have been assessed as an interesting way for growing proteins, and more specifically enzyme crystals, with high control on the final properties of the crystalline material produced, with potential fundamental implication in the field of structural biology and biotechnology.  相似文献   

16.
Three forms of penicillinase from Bacillus licheniformis have been isolated. Two are secreted into the extracellular medium and one is membrane-bound. The secreted proteins are water-soluble; one has been previously described and sequenced, the other contains an amino-terminal extension of eight amino acid residues. The membrane-bound form behaves in all respects as a typical amphiphilic membrane protein. It binds one micelle of Triton XI00 and reassociates with egg lecithin to lipid vesicles into which the protein is incorporated. No lipids are covalently associated with the purified protein. Membrane penicillinase contains an amino-terminal peptide extension as compared to the exo forms. This tail is the most likely explanation to its amphiphilic properties.  相似文献   

17.
As traditional detergents might destabilize or even denature membrane proteins, amphiphilic polymers have moved into the focus of membrane-protein research in recent years. Thus far, Amphipols are the best studied amphiphilic copolymers, having a hydrophilic backbone with short hydrophobic chains. However, since stabilizing as well as destabilizing effects of the Amphipol belt on the structure of membrane proteins have been described, we systematically analyze the impact of the most commonly used Amphipol A8-35 on the structure and stability of a well-defined transmembrane protein model, the glycophorin A transmembrane helix dimer. Amphipols are not able to directly extract proteins from their native membranes, and detergents are typically replaced by Amphipols only after protein extraction from membranes. As Amphipols form mixed micelles with detergents, a better understanding of Amphipol-detergent interactions is required. Therefore, we analyze the interaction of A8-35 with the anionic detergent sodium dodecyl sulfate and describe the impact of the mixed-micelle-like system on the stability of a transmembrane helix dimer. As A8-35 may highly stabilize and thereby rigidify a transmembrane protein structure, modest destabilization by controlled addition of detergents and formation of mixed micellar systems might be helpful to preserve the function of a membrane protein in Amphipol environments.  相似文献   

18.
Structural studies of membrane proteins are in constant evolution with the development of new improvements for their expression, purification, stabilization and crystallization. However, none of these methods still provides a universal approach to solve the structure of membrane proteins. Here we describe the crystallization of the human voltage-dependent anion channel-1 produced by a bacterial cell-free expression system. While VDAC structures have been recently solved, we propose an alternative strategy for producing the recombinant protein, which can be applied to other membrane proteins reluctant to expression, purification and crystallization by classical approaches. Despite a lot of efforts to crystallize a cell-free expressed membrane protein, this study is to our knowledge one of the first reports of a successful crystallization. Focusing on expression in a soluble and functional state, in a detergent environment, is the key to get crystals. Although the diffraction of VDAC crystals is limited, the simplicity and the rapidity to set-up and optimize this technology are drastic advantages in comparison to other methods.  相似文献   

19.
New series of amphiphilic structures are designed to exhibit various fluidity properties when spread at the air-water interface. The influence of the molecular structure of these lipids on the process of two-dimensional (2D) crystallization of the B subunit of DNA gyrase, a soluble protein, is investigated in terms of size of the crystals produced, protein ordering, and crystallization kinetics. Whereas no difference is observed concerning the mean size of the protein 2D crystals obtained on the different lipid supports, the ultimate protein ordering observable by electron microscopy using the negative-staining technique is more regularly attained with some of these new lipids. The most interesting point results from large discrepancies in crystallization kinetics as highly-ordered protein 2D crystals form within 6-24 h depending on the lipid layer structure. Thus, these new lipids reveal of special interest when studying proteins that suffer from extended incubation time at 4 degrees C or higher temperature and lose their functionality.  相似文献   

20.
The 19 amino acid signal peptide of rat liver aldehyde dehydrogenase, possessing a lysine substitution for an arginine and containing 3 extra amino acid residues at the C terminus, was studied by two-dimensional NMR in a dodecylphosphocholine micelle. In this membrane-like environment, the peptide contains two alpha-helical regions, both of which are amphiphilic, separated by a hinge region. The helix located closer to the C terminus is more stable than is the helix located near the N terminus. This suggests that the hydrophobic face of the C-terminal helix is buried within the hydrophobic region of the micelle. On the basis of these results a general model for protein translocation is presented in which the C-terminal amphiphilic helix of the signal region in the preprotein first binds to the mitochondrial membrane and then diffuses to the translocation receptor. The receptor then recognizes the N-terminal helix of the signal region, which is not anchored to the membrane. To explain how this signal peptide was imported into isolated mitochondria in the absence of energy or receptor protein [Pak, Y. K., & Weiner, H. (1990) J. Biol. Chem. 265, 14298-14307], a model for signal peptide translocation across a membrane barrier without the need for auxiliary membrane proteins is proposed. In this model the faces of the two helices fold upon each other, resulting in the mutual shielding of positively charged residues by the complementary hydrophilic face of the other amphiphilic helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号