首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A novel method is introduced for the estimation of grain numbers in autoradiographic sections of articular cartilage with an image analyzer. It is based on separation of grains from the underlying structures by gray level thresholding and determination of the percentage of total area occupied by grains in a relatively large measuring field. The mean grain size is used as a reference to calculate grain numbers per cell profile and per unit area of tissue in various zones of bovine articular cartilage labelled with 35S-sulphate in tissue culture. The results demonstrate considerable zonal differences as well as site related topographic variation in the rate of 35S-sulphate incorporation. The largest site-related variation in the grain counts was observed in the superficial zone, suggesting a delicate control of proteoglycan synthesis in this zone.The IBAS program used in this work is available from Dr. J.J. Parkkinen or through Bitnet or EARN mail: MLAMMI at FINKUO  相似文献   

2.
In the mandibular condyle of the newborn mouse the chondroprogenitor (CP) zone is the only layer that incorporates 3H-thymidine thus serving the source for cells of the cartilage lineage. Ultrastructurally these cells have a mesenchymal appearance surrounded by collagen fibrils as well as by additional filaments that become apparent following fixation with ferrocyanide-reduced OsO4. In addition, electron-dense particles indicative of proteoglycans are scattered throughout the matrix in the CP zone as well as in the chondroblastic and hypertrophic zones. Following labeling with 35S-sulfate the CP zone as well as the other compartments revealed a substantial number of grains following processing for autoradiography. The number of grains per cell was highest in the hypertrophic zone. Indirect immunofluorescence indicated the presence of fibronectin in the articular surface, CP zone and in the hypertrophic zone. The immunogold method localized fibronectin intracellularly in CP cells and extracellularly in the hypertrophic zone. Therefore, in the mandibular condyle the CP cells which are capable for DNA synthesis are also involved in the synthesis of macromolecules of which some are specific for the cartilage phenotype, while others are associated with other functions of connective tissue cells.  相似文献   

3.
This study investigates the separate and combined effects of IGF-1 and mechanical loads on chondrocytes in elderly human femoral head articular cartilage. Full depth biopsies of articular cartilage were subjected to either no load, static or cyclic (2 s on/2 s off) loading in unconfined compression at a stress of 1 MPa for 48 h with or without IGF-1 (300 ng ml(-1)). Chondrocyte biosynthetic activity was measured using 35S-sulphate and 3H-leucine during the last 24 h of loading. IGF-1 alone increased the rates of isotope incorporation, by 80% for 35S-SO4 and 40% for 3H-leucine, whereas loading alone reduced matrix biosynthesis. Applying load (cyclic or static) in the presence of IGF-1 returned the incorporation rates to their unstimulated levels. This study suggests elderly human articular cartilage is responsive to stimulation by IGF-1 but mechanical factors seem to act sufficiently strongly in the opposite direction to cancel this response.  相似文献   

4.
Articular cartilage contains four distinct zones, extending from the surface to the subchondral bone. Freshly isolated chondrocytes from the superficial zone of articular cartilage retain a collagenase-P-resistant cell-associated matrix. In the studies described here, the protein Del1 was identified as a component of the cell-associated matrix of superficial zone chondrocytes from adult bovine articular cartilage. Very little Del1 was associated with freshly isolated deep zone chondrocytes. Western blot analysis of articular cartilage cell and tissue extracts using polyclonal antibodies specific for Del1 showed Del1 was present in an insoluble cell-associated fraction. Extracts of the superficial zone of articular cartilage were found to be enriched in Del1 compared to the deeper layers of the tissue. Immunohistochemical staining of full-thickness articular cartilage with anti-Del1 antibodies also showed an enrichment of Del1 in the superficial zone. These observations are the first to describe the protein Del1 in a nonendothelial, nonfetal tissue.  相似文献   

5.
Summary Current evidence suggests that interactions between the subchondral bone and the articular cartilage of mammalian diarthrodial joints may occur through the action of bone-associated peptide factors. However, there is no suitable organ culture model for studying these interactions. This study defines a long-term tissue culture system where the articular cartilage is coupled to the adjacent subchondral bone obtained from the proximal ends of bovine metacarpals. Autoradiography done over 3 mo., by utilizing [35S]SO4 incorporation into cartilage proteoglycan (PG) and a procedure for cutting non-decalcified bone, demonstrated similar numbers of silver grains over chondrocytes in all cartilage zones, including the bone-cartilage interface. Newly synthesized PG (NSPG) from the cartilage of the “coupled” system over a 3-wk period was primarily of large hydrodynamic size (Kav of 0.34). Comparable bovine articular and nasal cartilage slice systems, incubated for short periods of time, yielded similar and somewhat larger NSPG, respectively. Labeled chondroitin sulphate PG accumulating in the medium of primary chondrocyte monolayer cultures, derived from the cartilage of the coupled system at 0, 1, 2, and 3 wk, revealed two polydisperse subpopulations (Kav of 0.30 to 0.38 and 0.51 to 0.68). We conclude that this coupled bone-cartilage system is viable for prolonged periods, is suitable for studies on the metabolism of articular cartilage PGs, and seems to have some advantages over the cultured articular cartilage slice system.  相似文献   

6.
It has been proposed that the superficial tangential zone (STZ) of articular cartilage is essential to the tissue’s load-distributing function. However, the exact mechanism by which the STZ fulfills this function has not yet been revealed. Using a channel-indentation experiment, it was recently shown that compared to intact tissue, cartilage without STZ behaves slightly stiffer and deforms significantly different in regions adjacent to mechanically compressed areas (Bevill et al. in Osteoarthr Cartil 18:1310–1318, 2010). We aim to further explore the role of STZ in the load-transfer mechanism of AC by thorough biomechanical analysis of these experiments. Using our previously validated fibril-reinforced swelling model of articular cartilage, which accounts for the depth-dependent collagen structure and biochemical composition of articular cartilage, we simulated the above-mentioned channel-indenter compression experiments for both intact and STZ-removed cartilage. First, we show that the composition of the deep zone in cartilage is most effective in carrying cartilage compression, which explains the apparent tissue stiffening after STZ removal. Second, we show that tangential fibrils in the STZ are responsible for transferring compressive loads from directly loaded regions to adjacent tissue. Cartilage with an intact STZ has superior load-bearing properties compared to cartilage in which the STZ is compromised, because the STZ is able to recruit a larger area of deep zone cartilage to carry compressive loads.  相似文献   

7.
Calcium-acidic phospholipid-phosphate complexes, known to induce in vitro hydroxyapatite formation from metastable calcium phosphate sotutions, have been isolated from the morphologically defined zones of the bovine epiphyseal growth plate. The changes in zonal distribution of these complexes in epiphyseal cartilage correlate directly with other biochemical changes which occur prior to cartilage calcification. The concentration of calcium-acidic phospholipid-phosphate complexes increases going from the morphologically defined reserve zone to the proliferative zone, peaking in the hypertrophic zone, where mineralization is initiated, and decreasing in primary spongiosa and diaphyseal bone. Expressed as milligrams of calcium-phospholipid-phosphate complex per milligram hydroxyproline the concentration ranged from 19 (articular cartilage) to 535 (hypertrophic cell zone) decreasing to 43 (diaphyseal bone) with parallel changes being seen when the concentration was expressed per gram of demineralized dry tissue, per total lipid, per DNA, or, per 5′-AMPase activity.  相似文献   

8.
Summary Study of the deep articular cartilage and adjacent calcified cartilage has been limited by the lack of an in vitro culture system which mimics this region of the cartilage. In this paper we describe a method to generate mineralized cartilagenous tissue in culture using chondrocytes obtained from the deep zone of bovine articular cartilage. The cells were plated on Millipore CMR filters. The chondrocytes in culture accumulated extracellular matrix and formed cartilagenous tissue which calcified when β-glycerophosphate was added to the culture medium. The cartilagenous tissue generated in vitro contains both type II and type X collagens, large sulfated proteoglycans, and alkaline phosphatase activity. Ultrastructurally, matrix vesicles were seen in the extracellular matrix. Selected area electron diffraction confirmed that the calcification was composed of hydroxyapatite crystals. The chondrocytes, as characterized thus far, appear to maintain their phenotype under these culture conditions which suggests that these cultures could be used as a model to examine the metabolism of cells from the deep zone of cartilage and mineralization of cartilagenous tissue in culture.  相似文献   

9.
We developed a new quantitative histochemical method for mapping aggrecan content in articular cartilage and applied it to models of cartilage degradation. Ruthenium hexaammine trichloride (RHT) forms co-precipitates with aggrecan, the main proteoglycan component of cartilage, and was previously found to be a good fixative in aiding the maintenance of chondrocyte morphology. We show that these RHT-aggrecan precipitates generate a positive chemographic signal on autoradiographic emulsions, in the absence of any radioactivity in the tissue section, via a process similar to the autometallographic process used previously for localization of trace metals ions in tissues. By exploiting the inherent depth-dependence of aggrecan concentration in adult articular cartilage, we demonstrated that the density of silver grains produced by RHT-derived chemography on autoradiographic emulsions correlated with locally measured aggrecan concentration as determined by the dimethylmethylene blue assay of microdissected tissue from these different depths of cartilage. To explore the benefits of this new method in monitoring tissue degradation, cartilage explants were degraded during culture using interleukin-1 (IL-1) or digested after culture using chondroitinase and keratinase. The RHT chemographic signal derived from these samples, compared to controls, showed sensitivity to loss of aggrecan and distinguished cell-mediated loss (IL-1) from degradation due to addition of exogenous enzymes. The RHT-derived chemographic grain density represents an interesting new quantitative tool for histological analysis of cartilage in physiology and in arthritis.  相似文献   

10.
The integrity of articular cartilage depends on the proper functioning and mechanical stimulation of chondrocytes, the cells that synthesize extracellular matrix and maintain tissue health. The biosynthetic activity of chondrocytes is influenced by genetic factors, environmental influences, extracellular matrix composition, and mechanical factors. The mechanical environment of chondrocytes is believed to be an important determinant for joint health, and chondrocyte deformation in response to mechanical loading is speculated to be an important regulator of metabolic activity. In previous studies of chondrocyte deformation, articular cartilage was described as a biphasic material consisting of a homogeneous, isotropic, linearly elastic solid phase, and an inviscid fluid phase. However, articular cartilage is known to be anisotropic and inhomogeneous across its depth. Therefore, isotropic and homogeneous models cannot make appropriate predictions for tissue and cell stresses and strains. Here, we modelled articular cartilage as a transversely isotropic, inhomogeneous (TI) material in which the anisotropy and inhomogeneity arose naturally from the microstructure of the depth-dependent collagen fibril orientation and volumetric fraction, as well as the chondrocyte shape and volumetric fraction. The purpose of this study was to analyse the deformation behaviour of chondrocytes using the TI model of articular cartilage. In order to evaluate our model against experimental results, we simulated indentation and unconfined compression tests for nominal compressions of 15%. Chondrocyte deformations were analysed as a function of location within the tissue. The TI model predicted a non-uniform behaviour across tissue depth: in indentation testing, cell height decreased by 43% in the superficial zone and between 11 and 29% in the deep zone. In unconfined compression testing, cell height decreased by 32% in the superficial zone, 25% in the middle, and 18% in the deep zones. This predicted non-uniformity is in agreement with experimental studies. The novelty of this study is the use of a cartilage material model accounting for the intrinsic inhomogeneity and anisotropy of cartilage caused by its microstructure.  相似文献   

11.
Articular cartilage is a multi-phasic, composite, fibre-reinforced material. Therefore, its mechanical properties are determined by the tissue microstructure. The presence of cells (chondrocytes) and collagen fibres within the proteoglycan matrix influences, at a local and a global level, the material symmetries. The volumetric concentration and shape of chondrocytes, and the volumetric concentration and spatial arrangement of collagen fibres have been observed to change as a function of depth in articular cartilage. In particular, collagen fibres are perpendicular to the bone-cartilage interface in the deep zone, their orientation is almost random in the middle zone, and they are parallel to the surface in the superficial zone. The aim of this work is to develop a model of elastic properties of articular cartilage based on its microstructure. In previous work, we addressed this problem based on Piola's notation for fourth-order tensors. Here, mathematical tools initially developed for transversely isotropic composite materials comprised of a statistical orientation of spheroidal inclusions are extended to articular cartilage, while taking into account the dependence of the elastic properties on cartilage depth. The resulting model is transversely isotropic and transversely homogeneous (TITH), the transverse plane being parallel to the bone-cartilage interface and the articular surface. Our results demonstrate that the axial elastic modulus decreases from the deep zone to the articular surface, a result that is in good agreement with experimental findings. Finite element simulations were carried out, in order to explore the TITH model's behaviour in articular cartilage compression tests. The force response, fluid flow and displacement fields obtained with the TITH model were compared with the classical linear elastic, isotropic, homogeneous (IH) model, showing that the IH model is unable to predict the non-uniform behaviour of the tissue. Based on considerations that the mechanical stability of the tissue depends on its topological and microstructural properties, our long-term goal is to clearly understand the stability conditions in topological terms, and the relationship with the growth and remodelling mechanisms in the healthy and diseased tissue.  相似文献   

12.
The effects of the lysosomal proteinase cathepsin D on the mechanical properties of adult human articular cartilage were examined in detail in 7 joints within the age range 21 to 72 years. The results of a preliminary study on the effects of the lysosomal proteinase cathepsin B1 and clostridial collagenase on the mechanical properties of cartilage are also presented. Cartilage which had been incubated with either cathepsin D or cathepsin B1 showed increased deformation in uniaxial compression perpendicular to the articular surface. The enzyme-treated cartilage also showed decreased tensile stiffness at low values of stress. This effect was more pronounced in specimens from the deeper zone of cartilage than in specimens from the superficial zone. It was also more pronounced in specimens which were aligned perpendicular to the predominant alignment of the collagen fibres in the superficial zone than in specimens which were parallel to the collagen fibres. At higher stresses the tensile stiffness of the treated cartilage was not significantly different from that of the untreated tissue. The tensile fracture stress of the cartilage was also not significantly reduced by the action of cathepsin D. In contrast to the effects observed with the cathepsins, the preliminary results obtained by incubating cartilage for 24 h with clostridial collagenase showed that both the tensile stiffness and the fracture stress were considerably lower than the corresponding values for the untreated tissue. Biochemical analysis of the incubation media, and the specimens, revealed that a large proportion of the proteoglycans was released from the cartilage by each of the three enzymes. The proportion of the total collagen which was released from the cartilage was different for each enzyme: cathepsin D released between 0 and 1.5 per cent, cathepsin B1 released between 2.3 and 4.3 per cent and collagenase released between 5.3 and 27.8 per cent of the collagen after 24 h.  相似文献   

13.
Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than in compression, and theoretical analyses have suggested that this tension–compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone. Ten human cartilage samples from six patellofemoral joints, and 10 bovine cartilage specimens from three calf patellofemoral joints were tested in unconfined compression. The peak fluid load support was measured at 79±11% and 69±15% at the articular surface and deep zone of human cartilage, respectively, and at 94±4% and 71±8% at the articular surface and deep zone of bovine calf cartilage, respectively. Statistical analyses confirmed both hypotheses of this study. These experimental results suggest that the tension–compression nonlinearity of cartilage is an essential functional property of the tissue which makes interstitial fluid pressurization the dominant mechanism of load support in articular cartilage.  相似文献   

14.
15.
The repair of articular cartilage following papain injection into the knee joint of the guinea pig was studied by light and electron microscopy, as well as by autoradiography using tritiated thymidine. Papain injection rapidly produced complete degradation of cartilage proteoglycan. Although a number of chondrocytes were also destroyed, the remaining chondrocytes showed mitotic cell division with resultant formation of cell clusters. Such chondrocytic regeneration, however, did not contribute significantly to the repair of cartilage tissue. On the other hand, mesenchymal cells proliferated from the transition zone and extended over the surface of the damaged cartilage. At the peripheral portion of the articular surface, they migrated and differentiated into chondrocytes with the formation of abundant intercellular matrix to produce hyaline cartilage. From these findings, it was apparent that mesenchymal cells in the transition zone were actively engaged in the repair of articular cartilage.  相似文献   

16.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

17.
Identification of progenitor/stem cell populations that differentiate specifically towards superficial zone articular chondrocytes is an unmet challenge for cartilage tissue engineering. Using fluorescence activated cell sorting (FACS) analysis we found a characteristic pattern of "side population" (SP) stem cells identified by the Hoechst 33342 dye. We established micromass cultures from this population of cells and tested their chondrogeneic potential. Control (untreated) cultures were minimally stained for Alcian blue - a marker of chondrogenesis. However, with BMP-7 treatment, Alcian blue staining was increased. Superficial zone protein - a specific marker for articular cartilage superficial zone chondrocytes - increased with BMP-7 and/or TGF-beta1 treatment in SP micromass cultures. Our results demonstrate the presence of stem/progenitor cells in the SP fraction isolated from the surface zone of bovine cartilage and have the ability to specifically differentiate towards the superficial zone articular chondrocyte.  相似文献   

18.
Adult rabbit articular cartilage was labelled in vivo over 48 h with [35S]sulphate and was then incubated in organ culture at pH 7.2. Approx. 65% of the tissue content of [35S]proteoglycan was released into the culture medium during the first 48 h of incubation. The average molecular size of the released proteoglycans, as assessed by fractionation on Sepharose 2B/CL and 4B/Cl, was only slightly smaller than that of the proteoglycans extracted from non-cultured cartilage with 4 M guanidine HCl. The percentage of released proteoglycans and extracted proteoglycans which formed aggregates with hyaluronic acid was approx. 25% and 75%, respectively. The results indicate that proteoglycan degradation in adult articular cartilage is initiated by a limited proteolysis of subunit core protein, with the production of non-aggregating species which diffuse readily from the tissue.  相似文献   

19.
Carbonic anhydrases (CAs), which catalyze the reversible reaction of carbonate hydration, are important for cartilage homeostasis. The full spectrum of CA activity of all 13 isoenzymes in articular cartilage is unknown. This study quantified the mRNA profile of CAs in rat articular cartilage, using quantitative polymerase chain reactions. Among the 13 functional CAs, CAs II, III, Vb, IX, XII and XIII were significantly expressed at mRNA level by the chondrocytes in articular cartilage. To verify these significantly expressed CAs in articular cartilage at protein level, immunohistochemistry was performed. While CAs III, Vb and XII distributed in the full-thickness of cartilage, including the calcified zone of cartilage, CA II was mainly localized in the proliferative zone of cartilage. CA IX was limited in the superficial zone of cartilage and CA XIII expressed in the superficial and partially mid zone. These results provide a framework for understanding individual CAs as well as the integrated CA family in cartilage biology, including matrix mineralization.  相似文献   

20.
M Wong  M Siegrist  X Cao 《Matrix biology》1999,18(4):391-399
In this study, we investigated the biosynthetic response of full thickness, adult bovine articular cartilage explants to 45 h of static and cyclic unconfined compression. The cyclic compression of articular cartilage resulted in a progressive consolidation of the cartilage matrix. The oscillatory loading increased protein synthesis ([35S]methionine incorporation) by as much as 50% above free swelling control values, but had an inhibitory influence on proteoglycan synthesis ([35SO4] incorporation). As expected, static compression was associated with a dose-dependent decrease in biosynthetic activity. ECM oligomeric proteins which were most affected by mechanical loading were fibronectin and cartilage oligomeric matrix protein (COMP). Static compression at all amplitudes caused a significant increase in fibronectin synthesis over free swelling control levels. Cyclic compression of articular cartilage at 0.1 Hz and higher was consistently associated with a dramatic increase in the synthesis of COMP as well as fibronectin. The biosynthetic activity of chondrocytes appears to be sensitive to both the frequency and amplitude of the applied load. The results of this study support the hypothesis that cartilage tissue can remodel its extracellular matrix in response to alterations in functional demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号