首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA recognition agents based on the indole-based aziridinyl eneimine and the cyclopent[b]indole methide species were designed and evaluated. The recognition process involved either selective alkylation or intercalating interactions in the major groove. DNA cleavage resulted from phosphate backbone alkylation (hydrolytic cleavage) and N(7) -alkylation (piperidine cleavage). The formation and fate of the eneimine was studied using enriched 13C NMR spectra and X-ray crystallography. The aziridinyl eneimine specifically alkylates the N(7) position of DNA resulting in direction of the aziridinyl alkylating center to either the 3'- or 5'-phosphate of the alkylated base. The eneimine species forms dimers and trimers that appear to recognize DNA at up to three base pairs. The cyclopent[b]indole quinone methide recognizes the 3'-GT-5' sequence and alkylates the guanine N(7) and the thymine 6-carbonyl oxygen causing the hydrolytic removal of these bases. In summary, new classes of DNA recognition agents are described and the utility of 13C-enrichment and 13C NMR to study DNA alkylation reactions is illustrated.  相似文献   

2.
Mitomycin C (MC) is a natural cytotoxic agent used in clinical anticancer chemotherapy. Its antitumor target appears to be DNA. Upon bioreductive activation MC alkylates and cross-links DNA. MC derivatives were synthesized in which MC was linked to DNA minor groove binding agents, analogous to netropsin and distamycin. One, two and three N-methylpyrrole carboxamide units were conjugated with MC by a (CH2)5-tether to the 7-amino group of MC (11, 12 and 13, respectively). In contrast to MC 11, 12 and 13 displayed non-covalent affinity to DNA. Their bioreductive activation by NADPH-cytochrome c reductase proceeded as fast as that of MC. Metabolites arising from reductive and low-pH activation were characterized and found to be analogous to those of MC. DNA cross-linking activities were weak and decreased with an increasing number of N-methylpyrrole carboxamide units linked with the mitomycin molecule. No adducts were formed with calf thymus DNA in detectable amounts. In vitro antitumor activities of 11-13 were determined using the NCI in vitro antitumor screen. The conjugates 11-13 are growth inhibitory; however, their activities are 1.5-2 orders of magnitude lower than that of MC. COMPARE analysis indicates that the mechanism of the action of 11 and 12 correlates moderately with MC but negatively with distamycin. Conjugate 13 correlates neither with MC nor with distamycin. The results suggest that the basic cause of the observed low activity of the MC-minor groove binder conjugates is the fast irreversible decay of the activated MC, competing effectively with the slow drug delivery to CpG sites, required for the alkylation.  相似文献   

3.
2,7-Diaminomitosene (2,7-DAM), the major metabolite of the antitumor antibiotic mitomycin C, forms DNA adducts in tumor cells. 2,7-DAM was reacted with the deoxyoligonucleotide d(GTGGTATACCAC) under reductive alkylation conditions. The resulting DNA adduct was characterized as d(G-T-G-[M]G-T-A-T-A-C-C-A-C) (5), where [M]G stands for a covalently modified guanine, linked at its N7-position to C10 of the mitosene. The adducted oligonucleotide complements with itself, retaining 2-fold symmetry in the 2:1 drug-duplex complex, and provides well-resolved NMR spectra, amenable for structure determination. Adduction at the N7-position of G4 ([M]G, 4) is characterized by a downfield shift of the G4(H8) proton and separate resonances for G4(NH(2)) protons. We assigned the exchangeable and nonexchangeable proton resonances of the mitosene and the deoxyoligonucleotide in adduct duplex 5 and identified intermolecular proton-proton NOEs necessary for structural characterization. Molecular dynamics computations guided by 126 intramolecular and 48 intermolecular distance restraints were performed to define the solution structure of the 2,7-DAM-DNA complex 5. A total of 12 structures were computed which exhibited pairwise rmsd values in the 0.54-1.42 A range. The 2,7-DAM molecule is anchored in the major groove of DNA by its C10 covalently linked to G4(N7) and is oriented 3' to the adducted guanine. The presence of 2,7-DAM in the major groove does not alter the overall B-DNA helical structure. Alignment in the major groove is a novel feature of the complexation of 2,7-DAM with DNA; other known major groove alkylators such as aflatoxin, possessing aromatic structural elements, form intercalated complexes. Thermal stability properties of the 2,7-DAM-DNA complex 5 were characteristic of nonintercalating guanine-N7 alkylating agents. Marked sequence selectivity of the alkylation by 2,7-DAM was observed, using a series of oligonucleotides incorporating variations of the 5'-TGGN sequence as substrates. The selectivity correlated with the sequence specificity of the negative molecular electrostatic potential of the major groove, suggesting that the alkylation selectivity of 2,7-DAM is determined by sequence-specific variation of the reactivity of the DNA. The unusual, major groove-aligned structure of the adduct 5 may account for the low cytotoxicity of 2,7-DAM.  相似文献   

4.
The mitomycins are a group of antitumor antibiotics that covalently bind to DNA upon reductive activation. Mitomycin A (1b; MA) is more toxic than its clinically useful mitomycin C (1a; MC). The greater toxicity of mitomycin A has been previously attributed to its higher reduction potential. In this report, the DNA alkylation products of reductively activated MA were isolated and characterized by conversion to the known 7-amino mitosene-deoxyguanosine adducts. The three major adducts formed were identified as a monoadduct, N2-(2"beta-amino-7"-methoxymitosen-1"alpha-yl)- 2'-deoxyguanosine (5), a decarbamoyl monoadduct, N2-(2"beta-amino-10"-decarbamoyl-7"-methoxymitosen-1"alpha-y l)-2'- deoxyguanosine (6), and a bisadduct, N2-(2"beta-amino-10"-deoxyguanosin-N2-yl-7-methoxymitosen-1" alpha- yl)-2'-deoxyguanosine (7). Under all reductive activation conditions employed, MA selectively alkylated the 2-amino group of guanine in DNA, like MC. In addition, both MA and MC alkylated DNA and cross-linked oligonucleotides to a similar extent. However, variations in the reductive activation conditions (H2/PtO2, Na2S2O4, or enzymatic) affected the distribution of the three major MA adducts in a different manner than the distribution of MC adducts was affected. A mechanism is proposed wherein the 7-methoxy substituent of MA allows initial indiscriminate activation of either of the drugs' two electrophilic sites. While oxygen inhibited cross-linking by MC, similar aerobic conditions exhibited little influence on the cross-linking ability of MA. Hence, the greater toxicity of MA may be influenced by increased and nonselective activation and cross-link formation in both aerobic and anaerobic cells. This effect is a direct consequence of the higher redox potential of MA as compared to MC.  相似文献   

5.
D M Peterson  J Fisher 《Biochemistry》1986,25(14):4077-4084
Mitomycin c in the presence of NADPH and brewers' yeast NADPH: (acceptor) oxidoreductase (Old Yellow enzyme, EC 1.6.99.1) is transformed, at pH 8.0 and with anaerobicity, to two major mitosene products (the cis- and trans-1-hydroxy-2,7-diaminomitosenes; respective yields of 45 and 30%). These arise by covalent trapping by solvent of a quinone methide intermediate, obtained by rearrangement of the mitomycin c hydroquinone. At lower pH (6.5), the major product of this reaction is 2,7-diaminomitosene, which arises by covalent trapping of the quinone methide by H+. In the former instance the quinone methide acts as an electrophile and in the latter as a nucleophile. A detailed kinetic analysis indicates that the role of the NADPH and Old Yellow enzyme is to initiate an autocatalytic reaction, propagated by mitomycin c reduction by the mitosene hydroquinones (arising by the electrophilic pathway). The evidence supporting this conclusion is the formation of oxidized mitosene products, under the rigorously anaerobic reaction circumstance, the nonstoichiometric participation of NADPH, a dependence of the velocity on the total mitomycin c concentration, the pH dependence of the reaction, and the accurate simulation of the overall kinetic course with a mathematical model of the autocatalytic pathway. These observations indicate that the autocatalytic pathway may be dominant during in vitro mitomycin c anaerobic reductive activation by other reducing agents and that (as with anthracycline reductive activation) oxidation of the mitosene hydroquinone obtained from nucleophile addition to the quinone methide may be a necessary event for the formation of stable covalent adducts in vivo.  相似文献   

6.
Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) – a derivative of MC lacking the carbamate on C10 – are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine–mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.  相似文献   

7.
Mitomycin C (MC), an antitumor antibiotic, alkylated Z-DNAs such as poly(dG-dC)/Co(NH3)3+(6), poly(dG-m5dC)/Mg2+ and brominated poly(dG-dC) upon reductive activation. Computer-generated energy-minimized molecular models indicated that monofunctional alkylation of Z-DNA at the N2-position of guanine by MC did not distort Z-DNA geometry, but bifunctional alkylation, leading to interstrand crosslinks between two N2-positions of guanine was sterically unfavorable. The above three Z-DNA's were exposed both to monofunctionally and bifunctionally activated MC in separate experiments and the resulting covalent MC-polynucleotide complexes were examined for conformation and for covalent MC-adducts, by circular dichroism (CD) spectroscopy and HPLC analysis of nuclease digests, respectively. Monofunctionally activated MC alkylated all three polynucleotides in their Z-forms, resulting in the same monofunctional N2-guanine adduct as that known to be formed with B-DNA. Upon bifunctional activation of MC, poly(dG-dC/Co(NH3)3+(6) reverted to the B-form and bifunctional (cross-link) adducts were detected, identical again with those formed with B-DNA. Poly(dG-m5dC), however, remained in the Z-form after the alkylation and only a monofunctional adduct could be detected. It was concluded that Z-DNA is subject to monofunctional alkylation by MC but cannot be cross-linked. The latter process occurs only when the Z-DNA is labile enough [as is in the case of poly(dG-dC)] to have some B-form in equilibrium at the site of the first formed monolinked adduct; the cross-linking then occurs at such local B-sites, pulling the overall B in equilibrium Z equilibrium irreversibly to the left. These results are in accord with the predictions from the above modeling. The irreversible "lock" by the MC cross-link on B-DNA may be exploited for probing Z-DNA intermediacy in various DNA functions.  相似文献   

8.
A new covalent mitomycin C-DNA adduct (4) was isolated from DNA exposed to reductively activated mitomycin C (MC) in vitro. The MC-treated DNA was hydrolyzed enzymatically under certain conditions, and the new adduct was isolated from the hydrolysate by HPLC. Its structure was determined by ultraviolet and circular dichroism spectroscopy and chemical and enzymatic transformations conducted on microscale. In the structure, a single 2" beta, 7"-diaminomitosene residue is linked bifunctionally to two guanines in the dinucleoside phosphate d(GpG). The guanines are linked at their N2 atoms to the C1" and C10" positions of the mitosene, respectively. A key to the structure was a finding that removal of the mitosene from the adduct by hot piperidine yielded d(GpG); another was that the adduct was slowly converted to the known interstrand cross-link adduct 3 by snake venom diesterase and alkaline phosphatase. Adduct 4 represents an intrastrand cross-link in DNA formed by MC. Of the two possible strand-polarity isomers of 4, 4a in which the mitosene 1"-position is linked to the 3'-guanine of d(GpG) is designated as the proper structure, on the basis of the mechanism of the cross-linking reaction. The same adduct 4 was isolated from poly(dG).poly(dC), synthetic oligonucleotides containing the GpG sequence, and Micrococcus luteus and calf thymus DNAs. The relative yields of interstrand and intrastrand cross-links (3 and 4) were determined under first-order kinetic conditions; an average 3.6-fold preference for the formation of 3 over that of 4 was observed. An explanation for this preference is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Anti benzo[a]pyrene diol epoxide (BPDE) alkylates guanines of DNA at N7 in the major groove and at the exocyclic amino group in the minor groove. In this report we investigated the rates of BPDE hydrolysis, DNA alkylation and subsequent depurination of BPDE-adducted pBR322 DNA fragment using polyacrylamide gel electrophoresis. Preincubation studies showed that it hydrolyzed completely in triethanolamine buffer in <2 min. The depurination kinetics showed that a fraction of the N7 alkylated guanine depurinated rapidly; however a significant amount of N7 guanine alkylation remained stable to spontaneous depurination over a 4-h period. Similar results were obtained for the hydrolysis and alkylation rates of syn isomer but it required nearly 500 times more concentration to induce similar levels of N7 guanine alkylation. Cadmium ion strongly inhibited the N7 guanine alkylation of both isomers. But the minor groove alkylation was not affected as demonstrated by postlabeling assay which confirmed the presence of heat-and cadmium-stable minor groove adducts in BPDE-treated calf thymus DNA. Based on these and our earlier findings, we propose a mechanism for the synergistic effect of cadmium in chemically induced carcinogenesis.  相似文献   

10.
Chemical reduction of mitosenes under aerobic conditions in DMSO showed characteristic ESR signals of the mitosene derived semiquinone free radicals. However, these signals diminished strongly upon addition of water to the reaction mixture, indicating a short lifetime of the mitosene semiquinone free radicals under aqueous conditions. In addition, enzymatic one-electron reduction of these mitosenes with either xanthine oxidase or purified NADPH cytochrome P450 reductase under anaerobic conditions showed no signals of the mitosene semiquinone free radicals. Subsequent cyclic voltammetry measurements demonstrated facilitation of the further one-electron reduction of the mitosene semiquinone free radicals in the presence of water in comparison with non-aqueous conditions. The present results strongly suggest that in the presence of water relatively stable hydroquinones are formed upon reduction of mitosenes. Consequently, the steady state concentrations of mitosene semiquinone free radicals will be lowered substantially in aqueous environment. Thus under physiological conditions, two-electron reduction and formation of the mitosene hydroquinone might be important in processes leading to DNA alkylation by these mitosenes.  相似文献   

11.
Clerocidin (CL) is a topoisomerase II poison, which cleaves DNA irreversibly at guanines (G) and reversibly at cytosines (C). Furthermore, the drug can induce enzyme-independent strand breaks at the G and C level. It has been previously shown that G-damage is induced by alkylation of the guanine N7, followed by spontaneous depurination and nucleic acid cleavage, whereas scission at C is obtained only after treatment with hot alkali, and no information is available to explain the nature of this damage. We present here a systematic study on the reactivity of CL towards C both in the DNA environment and in solution. Selected synthetic derivatives were employed to evaluate the role of each chemical group of the drug. The structure of CL–dC adduct was then characterized by tandem mass spectrometry and NMR: the adduct is a stable condensed ring system resulting from a concerted electrophilic attack of the adjacent carbonyl and epoxide groups of CL towards the exposed NH2 and N3, respectively. This reaction mechanism, shown here for the first time, is characterized by faster kinetic rates than alkylation at G, due to the fact that the rate-determining step, alkylation at the epoxide, is an intramolecular process, provided a Schiff base linking CL and C can rapidly form, whereas the corresponding reaction of G N7 is intermolecular. These results provide helpful hints to explain the reversible/irreversible nature of topoisomerase II mediated DNA damage produced by CL at C/G steps.  相似文献   

12.
Zang H  Gates KS 《Biochemistry》2000,39(48):14968-14975
Azinomycin B (also known as carzinophilin A) contains two electrophilic functional groups-an epoxide and an aziridine residue-that react with nucleophilic sites in duplex DNA to form cross-links at 5'-dGNT and 5'-dGNC sequences. Although the aziridine residue of azinomycin is undoubtedly required for cross-link formation, analogues containing an intact epoxide group but no aziridine residue retain significant biological activity. Azinomycin epoxide analogues (e.g., 5 and 6) are of interest due to their potent biological activity and because there is evidence that azinomycin may decompose in vivo to yield such compounds. To investigate the chemical events underlying the toxicity of azinomycin epoxides, DNA binding and alkylation by synthetic analogues of azinomycin B (6, 8, and 9) that comprise the naphthalene-containing "left half" of the antibiotic have been investigated. The epoxide-containing analogue of azinomycin (6) efficiently alkylates guanosine residues in duplex DNA. DNA alkylation by 6 is facilitated by noncovalent binding of the compound to the double helix. The results of UV-vis absorbance, fluorescence spectroscopy, DNA winding, viscometry, and equilibrium dialysis experiments indicate that the naphthalene group of azinomycin binds to DNA via intercalation. Equilibrium dialysis experiments provide an estimated binding constant of (1.3 +/- 0.3) x 10(3) M(-)(1) for the association of a nonalkylating azinomycin analogue (9) with duplex DNA. The DNA-binding and alkylating properties of the azinomycin epoxide 6 provide a basis for understanding the cytotoxicity of azinomycin analogues which contain an epoxide residue but no aziridine group and may provide insight into the mechanisms by which azinomycin forms interstrand DNA cross-links.  相似文献   

13.
A series of 3,6-substituted 2,5-bis(1-aziridinyl)-1,4-benzoquinone derivatives was shown to alkylate calf thymus DNA and to form DNA interstrand cross-links. Alkylation and cross-link formation were enhanced after electrochemical reduction of the compounds and increased with lower pH in the pH range from 4.5 to 8.0. Reduction especially shifts the pH at which cross-linking and alkylation occurs to higher values, which are more physiologically relevant. This shift is probably caused by the increase in pKa value of the aziridine ring after reduction of the quinone moiety. The inactivation of single-stranded bacteriophage M13mp19 DNA to form phages in an E. coli host, by the 3,6-unsubstituted parent compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone (TW13) was dependent upon reduction and pH in a similar way as was alkylation. The compound in our series with the least bulky, 3,6-substitutents, TW13, caused a high amount of cross-link formation. Compounds with methyl-substituted aziridine rings showed low cross-linking ability. Our results support the concept that the protonated reduced compound is the reactive species that alkylates DNA, and that steric factors play an important role in the reactivity towards DNA. A correlation is observed between the ability to induce DNA interstrand cross-links and inactivation of M13mp19 bacteriophage DNA. Cross-link formation was also demonstrated in E. coli K12 cells, where the compounds are reduced endogenously by bacterial reductases.  相似文献   

14.
The role of DT-diaphorase (DTD, EC 1.6.99.2) in the bioreductive activation of mitomycin C was examined using purified rat hepatic DTD. The formation of adducts with reduced glutathione (GSH), binding of [3H]mitomycin C to DNA, and mitomycin C-induced DNA interstrand cross-linking were used as indicators of bioactivation. Mitomycin C was metabolized by DTD in a pH-dependent manner with increasing amounts of metabolism observed as the pH was decreased from 7.8 to 5.8. The major metabolite observed during DTD-mediated reduction of mitomycin C was 2,7-diaminomitosene. GSH adduct formation, binding of [3H]mitomycin C and mitomycin C-induced DNA interstrand cross-linking were observed during DTD-mediated metabolism. In agreement with the pH dependence of metabolism, increased bioactivation was observed at lower pH values. Temporal studies and experiments using authentic material showed that 2,7-diaminomitosene could be further metabolized by DTD resulting in the formation of mitosene adducts with GSH. DNA cross-linking during either chemical (sodium borohydride) or enzymatic (DTD) mediated reduction of mitomycin C could be observed at pH 7.4, but it increased as the pH was decreased to 5.8, showing the critical role of pH in the cross-linking process. These data provide unequivocal evidence that the obligate two-electron reductase DTD can bioactivate mitomycin C to reactive species which can form adducts with GSH and DNA and induce DNA cross-linking. The use of mitomycin C may be a viable approach to the therapy of tumors high in DTD activity, particularly when combined with strategies to lower tumor pH.  相似文献   

15.
Aristolochic acid (AA), derived from the herbal genus Aristolochia and Asarum, has recently been shown to be associated with the development of nephropathy. Upon enzyme activation, AA is metabolized to the aristolactam-nitrenium ion intermediate, which reacts with the exocyclic amino group of the DNA bases via an electrophilic attack at its C7 position, leading to the formation of the corresponding DNA adducts. The AA-DNA adducts are believed to be associated with the nephrotoxic and carcinogenic effects of AA. In this study, liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS) was used to identify and quantify the AA-DNA adducts isolated from the kidney and liver tissues of the AA-dosed rats. The deoxycytidine adduct of AA (dC-AA) and the deoxyadenosine-AA adduct (dA-AA) were detected and quantified in the tissues of rats with one single oral dose (5mg or 30mg AA/kg body weight). The deoxyguanosine adduct (dG-AA), however, was detected only in the kidney of rats that were dosed at 30mg AA/kg body weight for three consecutive days. The amount of AA-DNA adducts found in the rats correlated well with the dosage.  相似文献   

16.
Kovacic  P. 《Photosynthetica》2002,40(1):31-34
Pheophytin (Pheo) is structurally constituted as to make possible certain reactions, previously given very little attention, which appear to play crucial roles in the initial electron transfer (ET) processes. The transformations involve enolisation with subsequent formation of mono- and di-iminium cations at the Pheo core. The important impact of these ions on ET from chlorophyll (Chl) to Pheo and then to quinone are evaluated. These insights rationalise the long-standing enigmas of fast transfer, across gap ET, activation-less aspect, and essential lack of reversibility. Comparisons are made to other important areas of iminium involvement, e.g. chemistry of vision, polyaniline doping, and DNA alkylation.  相似文献   

17.
18.
The major DNA adduct (greater than 95% total) resulting from the bioactivation of ethylene dibromide by conjugation with GSH is S-(2-(N7-guanyl)ethyl)GSH. The mutagenic potential of this adduct has been uncertain, however, because the observed mutagenicity might be caused by other adducts present at much lower levels, e.g. S-(2-N1-adenyl)ethyl)GSH. To assess the formation of other potential adducts, S-(2-(N3-deoxycytidyl)ethyl)GSH, S-(2-(O6-deoxyguanosyl)ethyl)GSH, and S-(2-(N2-deoxyguanosyl)ethyl)GSH were prepared and used as standards in the analysis of calf thymus DNA modified by treatment with [1,2-14C]ethylene dibromide and GSH in the presence of rat liver cytosol; only minor amounts (less than 0.2%) were found. A forward mutation assay in (repair-deficient) Salmonella typhimurium TA100 and sequence analysis were utilized to determine the type, site, and frequency of mutations in a portion of the lacZ gene resulting from in vitro modification of bacteriophage M13mp18 DNA with S-(2-chloroethyl)GSH, an analog of the ethylene dibromide-GSH conjugate. An adduct level of approximately 8 nmol (mg DNA)-1 resulted in a 10-fold increase in mutation frequency relative to the spontaneous level. The spectrum of spontaneous mutations was quite varied, but the spectrum of S-(2-chloroethyl)GSH-induced mutations consisted primarily of base substitutions of which G:C to A:T transitions accounted for 75% (70% of the total mutations). All available evidence implicates S-(2-(N7-guanyl)ethyl)GSH as the cause of these mutations inasmuch as the levels of the minor adducts are not consistent with the mutation frequency observed in this system. The sequence selectivity of alkylation was determined by treatment of end-labeled lac DNA fragments with S-(2-chloroethyl)GSH, cleavage of the DNA at adduct sites, and electrophoretic analysis. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. We suggest that the mechanism of mutagenesis involves DNA sequence-dependent alterations in the interaction of the polymerase with the (modified) template and incoming nucleotide.  相似文献   

19.
V Favaudon 《Biochimie》1982,64(7):457-475
Bioactivation of a number of DNA-specific antitumor drugs depends on oxidoreduction. Bleomycin, neocarzinostatin and anthracycline glycosides are the best known among such drugs in terms of reductive activation processes. Their reduction results in short-lived radical or electrophilic intermediates attacking DNA stereospecifically. The physico-chemical properties of these drugs and the nature of DNA damage are reviewed. Models for DNA-intercalation, electron-donor systems involved in drug metabolisation, and the role of oxygen in radical reactions, are discussed in the light of recent reports.  相似文献   

20.
The bioactivation of 7-hydroxy-methyl-12-methylbenz[a]anthracene (HMBA) to an electrophilic sulfuric acid ester metabolite has been shown to be catalyzed by rat liver bile acid sulfotransferase I (BAST I). The sulfation and activation of HMBA by BAST I was determined by the ability of sulfated HMBA to form DNA ad-ducts. The BAST I was also shown to react with rabbit anti-human dehydroepiandrosterone sulfotransferase antisera and to represent a major form of hydroxysteroid/bile acid sulfotransferase in female rat liver cytosol. Higher levels of BAST I activity and immunoreactivity as well as HMBA-DNA adduct formation were detected in female rat liver cytosol than in male rat liver cytosol. The bioactivation of HMBA by pure BAST I was dependent on the presence of 3′-phosphoadenosine 5′-phos-phosulfate (PAPS) in the reaction and was inhibited by dehydroepiandrosterone, a physiological substrate for BAST I. Glutathione, a cellular nucleophile with important protective properties, decreased DNA adduct formation in the HMBA sulfation reaction in the absence of glutathione S-transferase activity. These results indicate the usefulness of BAST I to investigate the sulfation and activation of HMBA and probably other hydroxy-methylated polyaromatic hydrocarbons to electrophilic and mutagenic metabolites under defined reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号