首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chromogranin A (CGA) is a protein that is stored and released together with neurotransmitters and hormones in the nervous, endocrine and diffuse neuroendocrine systems. As human vasostatins I and II [CGA(1-76) and CGA(1-113), respectively] have been reported to affect vessel motility and exert concentration-dependent cardiosuppressive effects on isolated whole heart preparations of eel, frog and rat (i.e. negative inotropism and antiadrenergic activity), we investigated the presence of vasostatin-containing peptides in rat heart. Rat heart extracts were purified by RP-HPLC, and the resulting fractions analyzed for the presence of CGA N-terminal fragments using dot-blot analysis. CGA-immunoreactive fractions were submitted to western blot and MS analysis using the TOF/TOF technique. Four endogenous N-terminal CGA-derived peptides [CGA(4-113), CGA(1-124), CGA(1-135) and CGA(1-199)] containing the vasostatin sequence were characterized. The following post-translational modifications of these fragments were identified: phosphorylation at Ser96, O-glycosylation (trisaccharide, NAcGal-Gal-NeuAc) at Thr126, and oxidation at three methionine residues. This first identification of CGA-derived peptides containing the vasostatin motif in rat heart supports their role in cardiac physiology by an autocrine/paracrine mechanism.  相似文献   

2.
N-terminal chromogranin A (CGA) contains peptides with vasoinhibitory properties, called vasostatin I (VST) and II [CGA(1–76) and (1–113) in human and bovine; (1–128) in rat]. Three fragments of VST were synthesized and antisera raised: human CGA(68–76) (VST I), rat CGA(121–128) (VST II fragment 2), and bovine/human CGA(83–91) (VST II, fragment 3). Strong immunoreactivity was observed in PC12 cells with antisera to VST II, fragment 3, VST I, and neuron-specific enolase. Little or no immunoreactivity was observed using antisera to synaptophysin, whole molecule CGA, pancreastatin, protein gene product 9.5, somatostatin, pancreatic polypeptide, or with antibodies 875 and 876 to VST II, fragment 2. Most of the VST antisera cross-reacted, with a species of molecular weight, 61 kDa but one, 874, cross-reacted with two species of molecular weights, 7.2 and 12 kDa. Our results show the presence of N-terminally processed CGA in PC12 cells.  相似文献   

3.
N-terminal peptides of chromogranin A and B (CGA and CGB) were compared for dilator responses in isolated bovine coronary arteries (bCoA), measuring diameter changes as a function of pressure. bCoA developed and maintained myogenic tone (MYT) at approximately 20% from 50 to 150 mm Hg. In contrast to CGB(1-40), CGA(1-40) and CGA(1-76) (VS-I) both displayed significant intrinsic vasodilator effects. CGA(1-40) reduced myogenic reactivity from 70 to 150 mm Hg (p<0.05, n=6). At 75 mm Hg, CGA(1-40) showed a concentration-dependent dilatation at 0.1 nM-10 microM. The dilator effect of CGA(1-40) persisted at moderately elevated [K(+)](e) (8.4-16 mM). However, this effect was diminished by pertussis toxin (PTX) and abolished by antagonists to several subtypes of K(+) channels (tetraethylammonium, Ba(2+) and glibenclamide). These results demonstrate that the N-terminal domain of CGA has dilator effect in the myogenically active bCoA. We propose that CGA(1-40) and the naturally occurring vasostatin I are regulatory peptides of relevance for the coronary microcirculation and that a G(alphai) sub-unit and K(+) channel activation may be involved in the signal pathway.  相似文献   

4.
A definitive role for chromogranin A (CGA)-derived fragments in the control of the gastrointestinal smooth muscle contractility has not been yet established. The purpose of the present study was to evaluate, in vitro, the effects of the recombinant vasostatin 1-78 (VS-1), CGA 7-57 and CGA 47-66 on the mouse gastric mechanical activity, recording the changes of intraluminal pressure. VS-1, CGA 7-57 and CGA 47-66 produced concentration-dependent relaxations. Mouse anti-vasostatin-1 monoclonal antibody 5A8, recognising the region 53-57, abolished the relaxation induced by VS-1, indicating the specificity of the effect. The relaxation was significantly reduced by tetrodotoxin (TTX), blocker of neuronal voltage-dependent Na(+) channels, l-NAME, inhibitor of nitric oxide (NO) synthase, or apamin, blocker of small conductance Ca(2+)-dependent K(+) channels. The joint application of TTX and l-NAME did not show any additive effects, whereas TTX plus apamin abolished the VS-1 response. The results suggest that the N-terminal CGA-derived peptides are able to relax mouse gastric muscle and, therefore, they point out an inhibitory role of vasostatin I in the gastrointestinal tract. The relaxation is mediated in part by neural mechanisms through NO production and in part by non-neural mechanisms involving the opening of small conductance Ca(2+)-dependent K(+) channels.  相似文献   

5.
Chromogranin A (CgA), an acidic granule protein of the regulated secretory pathway in the diffuse neuroendocrine system, is postulated to serve as a prohormone for regulatory peptides. Betagranin (rCgA(1-128)), the first N-terminal cleavage product of rat CgA, is 87% homologous to the bovine vasostatin I (bCgA(1-76)), previously shown to be vasoinhibitory in bovine resistance arteries. In this study the vasoactivity of homologous rat and bovine peptides was investigated in the rat posterior cerebral artery. Firstly, we examined the interaction of rhodamine (Rh)-labelled bCgA(7-40) and bCgA(47-70) with elements of the arterial wall by fluorescence microscopy. Secondly, rCgA(7-57), bCgA(1-40), bCgA(7-40) and bCgA(47-66) (chromofungin) were studied for effects on arterial tone and intracellular calcium as function of pressure in an arteriograph. Although without dilator or constrictor responses at 60-150 mm Hg, the rat peptide (rCgA(7-57)) evoked a significant delay in the onset of forced dilatation at 170 mm Hg, in contrast to the bovine peptides bCgA(1-40), bCgA(7-40) and bCgA(47-66) (chromofungin). Neither Rh-bCgA(7-40) nor Rh-bCgA(47-70) stained the endothelial layer, while Rh-bCgA(47-70) but not Rh-bCgA(7-40) stained the smooth muscle compartment. Analogously, bCgA(47-66) but not bCgA(7-40) reduced intracellular calcium, however without modifying the myogenic response. Thus, the betagranin peptide rCgA(7-57) and the two bovine chromofungin-containing peptides, highly homologous to the corresponding sequence (rCgA(47-66)), affected the rat cerebral artery without vasodilator effects, indicating significant species differences in vasoactivity of the N-terminal domain of CgA.  相似文献   

6.
The vasoinhibitory effect of NP-252, a 1,4-dihydropyridine derivative Ca++ antagonist, was examined in canine cerebral artery, and this effect was compared with that of nifedipine. NP-252 (10(-7)M) and nifedipine (10(-6) M) nearly abolished the contraction induced by addition of Ca++ to Ca(++)-free medium containing KC1. NP-252 (10(-6)M) and nifedipine (10(-6)M) attenuated the contraction produced by thromboxane A2 agonist (STA2) in normal medium, and the resultant contractions were 22% (n = 6) and 35% (n = 6) of the control contraction, respectively. The vasoinhibitory effects of NP-252 were significantly stronger than those of nifedipine in canine cerebral artery. NP-252 (10(-7) and 10(-6) M) dose-dependently attenuated nifedipine-resistant Ca(++)-contraction in the presence of STA2 in both canine cerebral and coronary arteries. The inhibitory effect of combined treatment with NP-252 (10(-6) M) and nitroglycerin (10(-6) M) on nifedipine-resistant Ca(++)-contraction in the cerebral artery was additive. These results indicate that NP-252 possesses a stronger vasoinhibitory effect than that of nifedipine in canine cerebral artery.  相似文献   

7.
Phospholemman (PLM), a member of the FXYD family of small ion transport regulators, inhibits cardiac Na+/Ca2+ exchanger (NCX1). NCX1 is made up of N-terminal domain consisting of the first five transmembrane segments (residues 1-217), a large intracellular loop (residues 218-764), and a C-terminal domain comprising the last four transmembrane segments (residues 765-938). Using glutathione S-transferase (GST) pull-down assay, we demonstrated that the intracellular loop, but not the N- or C-terminal transmembrane domains of NCX1, was associated with PLM. Further analysis using protein constructs of GST fused to various segments of the intracellular loop of NCX1 suggest that PLM bound to residues 218-371 and 508-764 but not 371-508. Split Na+/Ca2+ exchangers consisting of N- or C-terminal domains with different lengths of the intracellular loop were co-expressed with PLM in HEK293 cells that are devoid of endogenous PLM and NCX1. Although expression of N-terminal but not C-terminal domain alone resulted in correct membrane targeting, co-expression of both N- and C-terminal domains was required for correct membrane targeting and functional exchange activity. NCX1 current measurements indicate that PLM decreased NCX1 current only when the split exchangers contained residues 218-358 of the intracellular loop. Co-immunoprecipitation experiments with PLM and split exchangers suggest that PLM associated with the N-terminal domain of NCX1 when it contained intracellular loop residues 218-358. TM43, a PLM mutant with its cytoplasmic tail truncated, did not co-immunoprecipitate with wild-type NCX1 when co-expressed in HEK293 cells, confirming little to no interaction between the transmembrane domains of PLM and NCX1. We conclude that PLM interacted with the intracellular loop of NCX1, most likely at residues 218-358.  相似文献   

8.
嗜铬粒蛋白(CGA)是存在于分泌细胞的由439个氨基酸组成的可溶性蛋白。近年的研究发现CGA的N端具有抗血管收缩、抗细菌和抗真菌的功能。为了寻找高效低毒的抗真菌片段,利用PCR技术扩增了编码人嗜铬粒蛋白N端1-76位氨基酸(CGA1-76)的DNA片段,并将之克隆进本实验构建的枯草杆菌诱导型表达载体pSBPTQ,获得含CGA1-76基因的重组质粒pSVTQ,转化蛋白酶三缺陷的枯草杆菌DB403。经蔗糖诱导后,CGA1-76片段在枯草杆菌DB403(pSVTQ)中获得表达,产物分泌到细胞外,分泌量约为5mg/L,占总分泌蛋白的133% 。测试了表达产物对几种丝状真菌和酵母的抑制作用,发现在4μmol/L的浓度下,枯草杆菌表达的重组CGA1-76对镰刀菌、链格孢霉及白假丝酵母有明显的抑制作用。  相似文献   

9.
Edema factor (EF), a toxin from Bacillus anthracis (anthrax), possesses adenylyl cyclase activity and requires the ubiquitous Ca2+-sensor calmodulin (CaM) for activity. CaM can exist in three major structural states: an apo state with no Ca2+ bound, a two Ca2+ state with its C-terminal domain Ca2+-loaded, and a four Ca2+ state in which the lower Ca2+ affinity N-terminal domain is also ligated. Here, the interaction of EF with the three Ca2+ states of CaM has been examined by NMR spectroscopy and changes in the Ca2+ affinity of CaM in the presence of EF have been determined by flow dialysis. Backbone chemical shift perturbations of CaM show that EF interacts weakly with the N-terminal domain of apoCaM. The C-terminal CaM domain only engages in the interaction upon Ca2+ ligation, rendering the overall interaction much tighter. In the presence of EF, the C-terminal domain binds Ca2+ with higher affinity, but loses binding cooperativity, whereas the N-terminal domain exhibits strongly reduced Ca2+ affinity. As judged by chemical shift differences, the N-terminal CaM domain remains bound to EF upon subsequent Ca2+ ligation. This Ca2+ dependence of the EF-CaM interaction differs from that observed for most other CaM targets, which normally interact only with the Ca2+-bound CaM domains and become active following the transition to the four Ca2+ state.  相似文献   

10.
Adrenoceptor function in the human internal thoracic artery (ITA) was characterized in vitro using segments of the artery obtained during coronary bypass operations. Specimens were prepared as isolated arterial rings mounted in a tissue bath, and mechanical activity (isometric tension) was measured in response to drugs. The ITA responded to phenylephrine (PE), epinephrine, and norepinephrine with concentration-dependent contractions. The PE-induced contractions were antagonized by phenoxybenzamine, prazosin, and high concentrations of yohimbine. The ITA was not effectively contracted by clonidine in the concentration range normally associated with alpha 2-adrenoceptor stimulation. The beta-adrenoceptor agonist, isoproterenol, had a weak and variable effect on the ITA; samples from 9 out of 12 subjects did not respond to isoproterenol, whereas samples from 3 subjects responded with relaxations of between 33 and 42%. These in vitro studies indicate that the most important adrenoceptors of the human ITA are alpha-adrenoceptors; this may be relevant for the pharmacologic management of patients undergoing coronary bypass surgery using the ITA.  相似文献   

11.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

12.
S H Yoo 《Biochemistry》1992,31(26):6134-6140
Chromogranin A (CGA), the most abundant protein in bovine adrenal chromaffin granules, is a high-capacity, low-affinity Ca(2+)-binding protein found in most neuroendocrine cells, and binds calmodulin (CaM) in a Ca(2+)-dependent manner. The binding of chromogranin A to calmodulin was determined by measuring the intrinsic tryptophan fluorescence of chromogranin A in the presence and absence of Ca2+. Binding was specifically Ca(2+)-dependent; neither Mg2+ nor Mn2+ could substitute for Ca2+. Chelation of Ca2+ by EGTA completely eliminated the chromogranin A-calmodulin interaction. CaM binding was demonstrated by a synthetic CGA peptide representing residues 40-65. When the CGA peptide and CaM were mixed in the presence of 15 mM CaCl2, the intrinsic tryptophan fluorescence emission underwent a substantial blue-shift, shifting from 350 to 330 nm. Like the intact CGA, the peptide-CaM binding was specifically Ca(2+)-dependent, and neither Mg2+ nor Mn2+ could induce the binding. Calmodulin bound both to CGA and to the synthetic CGA peptide with a stoichiometry of one to one. The dissociation constants (Kd) determined by fluorometric titration were 13 nM for the peptide-CaM binding and 17 nM for intact CGA-CaM binding. The Kd values are comparable to those (approximately 10(-9) M) of other CaM-binding proteins and peptides, demonstrating a tight binding of CaM by CGA. The CaM-binding CGA residues 40-65 are 100% conserved among all the sequenced CGAs in contrast to 50-60% conservation found in the entire sequence, implying essential roles of this region.  相似文献   

13.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

14.
15.
Centrins are well-conserved calcium binding proteins from the EF-hand superfamily implicated in various cellular functions, such as centrosome duplication, DNA repair, and nuclear mRNA export. The intrinsic molecular flexibility and the self-association tendency make difficult the structural characterization of the integral protein. In this paper we report the solution structure, the Ca2+ binding properties, and the intermolecular interactions of the N-terminal domain of two human centrin isoforms, HsCen1 and HsCen2. In the absence of Ca2+, the N-terminal construct of HsCen2 revealed a compact core conformation including four almost antiparallel alpha-helices and a short antiparallel beta-sheet, very similar to the apo state structure of other calcium regulatory EF-hand domains. The first 25 residues show a highly irregular and dynamic structure. The three-dimensional model for the N-terminal domain of HsCen1, based on the high sequence conservation and NMR spectroscopic data, shows very close structural properties. Ca2+ titration of the apo-N-terminal domain of HsCen1 and HsCen2, monitored by NMR spectroscopy, revealed a very weak affinity (10(2)-10(3) M(-1)), suggesting that the cellular role of this domain is not calcium dependent. Isothermal calorimetric titrations showed that an 18-residue peptide, derived from the N-terminal unstructured fragment, has a significant affinity (approximately 10(5) M(-1)) for the isolated C-terminal domain, suggesting an active role in the self-assembly of centrin molecules.  相似文献   

16.
5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.  相似文献   

17.
The N-terminal 70-kDa fragment of human plasma fibronectin, purified from a cathepsin D digest, is characterized by lack of stability. It is processed proteolytically during incubation in the presence of Ca2+ into 27-kDa N-terminal heparin-binding and 45-kDa collagen-binding domains. The N-terminal residue in the 27-kDa fragment was blocked as in native fibronectin. The 45-kDa fragments began with the sequences AAVYQP, AVYQP and VYQP (residues 260, 261, 262-265 of fibronectin) that correspond to the beginning of the collagen-binding domain. In the presence of Ca2+ the purified 27-kDa fragment underwent further processing finally leading to the cleavage of the bond K85-D86 and to the simultaneous appearance of a specific proteolytic activity. Inhibition studies suggests that the newly generated enzyme is a Ca(2+)-dependent serine proteinase. Among all assayed matrix proteins, the newly generated enzyme cleaves native fibronectin and its fragments. It is proposed that this fibronectinase may originate from the N-terminal domain of fibronectin.  相似文献   

18.
Sarcoplasmic reticulum Ca2+-ATPase structure and organization in the membrane has been studied by infrared spectroscopy by decomposition of the amide I band. Besides the component bands assignable to secondary structure elements such as alpha-helix, beta-sheet, etc...., two unusual bands, one at 1,645 cm(-1) in H2O buffer and the other at 1,625 cm(-1) in D2O buffer are present. By perturbing the protein using temperature and limited proteolysis, the band at 1,645 cm(-1) is tentatively assigned to alpha-helical segments located in the cytoplasmic domain and coupled to beta-sheet structure, whereas the band at 1,625 cm(-1) arises probably from monomer-monomer contacts in the native oligomeric protein. The secondary structure obtained is 33% alpha-helical segments in the transmembrane plus stalk domain; 20% alpha-helix and 22% beta-sheet in the cytoplasmic domain plus 19% turns and 6% unordered structure. Thermal unfolding of Ca2+-ATPase is a complex process that cannot be described as a two-state denaturation. The results obtained are compatible with the idea that the protein is an oligomer at room temperature. The loss of the 1,625 cm(-1) band upon heating would be consistent with a disruption of the oligomers in a process that later gives rise to aggregates (appearance of the 1,618 cm(-1) band). This picture would also be compatible with early results suggesting that processes governing Ca2+ accumulation and ATPase activity are uncoupled at temperatures above 37 degrees C, so that while ATPase activity proceeds at high rates, Ca2+ accumulation is inhibited.  相似文献   

19.
Very little is known about the role played by CGA and its fragments in the gastrointestinal physiology. We have studied the role of CGA N-terminal fragments in the regulation of intestinal smooth muscle contractility by measuring the influence of recombinant CGA 1-78 (VS-1) and synthetic CGA 7-57 peptides on the spontaneous mechanical activity of rat proximal colon in vitro. The mechanical activity was recorded as changes in the intraluminal pressure. VS-1 (0.1-30 nM) and CGA 7-57 (10-300 nM) produced concentration-dependent inhibitory effects, characterized by a progressive decrease in the mean amplitude of circular muscle spontaneous contractions, without affecting the resting tone. The response to VS-1 was antagonised by anti-CGA monoclonal antibodies (mAb5A8, B4E11, 7D1 or 4D5) but not by an irrelevant antibody, indicating that the effect was specific. The inhibitory responses to VS-1 and to CGA 7-57 were significantly reduced by pre-treatment of the preparations with N(omega)-nitro-l-arginine methyl ester (l-NAME) (300 microM), 1H-(1,2,4) oxadiazolo-(4,3-a) quinoxalin-1-one (ODQ) (10 microM), apamin (0.1 microM) or tetrodotoxin (TTX) (1 microM). The results suggest that VS-1 plays an inhibitory modulatory role on spontaneous contractions rat colon circular muscle, through mechanisms involving in part neural release of nitric oxide.  相似文献   

20.
The saphenous vein (SV) is the most commonly used conduit for revascularization in patients undergoing coronary artery bypass surgery (CABG). The patency rate of this vessel is inferior to the internal thoracic artery (ITA). In the majority of CABG procedures the ITA is removed with its outer pedicle intact whereas the (human) SV (hSV) is harvested with pedicle removed. The vasa vasorum, a microvessel network providing the adventitia and media with oxygen and nutrients, is more pronounced and penetrates deeper towards the lumen in veins than in arteries. When prepared in conventional CABG the vascular trauma caused when removing the hSV pedicle damages the vasa vasorum, a situation affecting transmural flow potentially impacting on graft performance. In patients, where the hSV is harvested with pedicle intact, the vasa vasorum is preserved and transmural blood flow restored at graft insertion and completion of CABG. By maintaining blood supply to the hSV wall, apart from oxygen and nutrients, the vasa vasorum may also transport factors potentially beneficial to graft performance. Studies, using either corrosion casts or India ink, have shown the course of vasa vasorum in animal SV as well as in hSV. In addition, there is some evidence that vasa vasorum of hSV terminate in the vessel lumen based on ex vivo perfusion, histological and ultrastructural studies. This review describes the preparation of the hSV as a bypass conduit in CABG and its performance compared with the ITA as well as how and why its patency might be improved by harvesting with minimal trauma in a way that preserves an intact vasa vasorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号