首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysine 32 has been previously implicated by chemical modification and modeling studies as a key component of the domain which controls recognition and binding of cytochrome c to its physiological partners, e.g. cytochrome b2, cytochrome c peroxidase, and cytochrome oxidase. In order to quantitate the importance of this residue, we have investigated the role of Lys-32 in the reactivity of cytochrome c in redox reactions in vitro and in vivo with protein partners by using a series of altered forms of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae in which Lys-32 is replaced by Leu-32, Gln-32, Trp-32, and Tyr-32. Leu-32 and Gln-32 represent substitutions which change charge without seriously affecting the steric bulk of the side chain or the stability of the protein. For the Leu-32- and Gln-32-altered proteins, steady state kinetic studies with cytochrome c peroxidase, cytochrome b2, and cytochrome oxidase showed that neither of the steady state kinetic parameters, Km nor Vmax, were substantially modified by mutation. Studies of single turnover kinetics with a small molecule (ascorbate) or within bound complexes with either cytochrome b5 or cytochrome c peroxidase demonstrated that redox kinetics are only slightly affected by these substitutions. NMR experiments demonstrated that the Gln-32-altered protein can still bind strongly to a physiological partner, cytochrome c peroxidase. Growth in lactate medium demonstrated that the activity in vivo compared with the normal value was reduced to only 85% with the Gln-32- and Leu-32-altered proteins and to 65% with the Trp-32- and Tyr-32-altered proteins. These findings suggest that the evolutionary invariance of Lys-32 reflects only small quantitative changes in the binding and reactivity of cytochrome c.  相似文献   

2.
The dinuclear copper center (TtCuA) forming the electron entry site in the subunit II of the cytochrome c oxidase in Thermus thermophilus shows high stability toward thermal as well as denaturant-induced unfolding of the protein at ambient pH. We have studied the effect of pH on the stability of the holo-protein as well as of the apo-protein by UV-visible absorption, far-UV, and visible circular dichroism spectroscopy. The results show that the holo-protein both in the native mixed-valence state as well as in the reduced state of the metal ions and the apo-protein of TtCuA were extremely stable toward unfolding by guanidine hydrochloride at ambient pH. The thermal unfolding studies at different values of pH suggested that decreasing pH had almost no effect on the thermal stability of the protein in the absence of the denaturant. However, the stability of the proteins in presence of the denaturant was considerably decreased on lowering the pH. Moreover, the stability of the holo-protein in the reduced state of the metal ion was found to be lower than that in the mixed-valence state at the same pH. The denaturant-induced unfolding of the protein at different values of pH was analyzed using a two-state unfolding model. The values of the free energy of unfolding were found to increase with pH. The holo-protein showed that the variation of the unfolding free energy was associated with a pKa of approximately 5.5. This is consistent with the model that the protonation of a histidine residue may be responsible for the decrease in the stability of the holo-protein at low pH. The results were interpreted in the light of the reported crystal structure of the protein.  相似文献   

3.
We report steady-state and time-resolved fluorescence studies with the single tryptophan protein, Staphylococcus aureus A, and several of its site-directed mutants. A couple of these mutants, nuclease-conA and nuclease-conA-S28G (which are hybrid proteins containing a six amino acid beta-turn substitute from concanavalin A), are found to have a much lower thermodynamic stability than the wild type. The thermal transition temperatures for nuclease-conA and S28G are 32.8 and 30.5 degrees C, which are about 20 degrees C lower than the Tm for wild-type nuclease A. These mutant proteins also are denatured by a much lower concentration of the denaturants urea and guanidine hydrochloride. We also show that an unfolding transition in the structure of the nuclease-conA hybrids can be induced by relatively low hydrostatic pressure (approximately 700 bar). The free energy for unfolding of nuclease-conA (and nuclease-conA-S28G) is found to be only 1.4 kcal/mol (and 1.2 kcal/mol) by thermal, urea, guanidine hydrochloride, and pressure unfolding. Time-resolved fluorescence intensity and anisotropy measurements with nuclease-conA-S28G show the temperature-, urea-, and pressure-perturbed states each to have a reduced average intensity decay time and to depolarize with a rotational correlation time of approximately 1.0 ns (as compared to a rotational correlation time of 11 ns for the native form of nuclease-conA-S28G at 20 degrees C).  相似文献   

4.
We have characterized the guanidine-induced unfolding of both yeast and bovine ubiquitin at 25 degrees C and in the acidic pH range on the basis of fluorescence and circular dichroism measurements. Unfolding Gibbs energy changes calculated by linear extrapolation from high guanidine unfolding data are found to depend very weakly on pH. A simple explanation for this result involves the two following assumptions: (1) charged atoms of ionizable groups are exposed to the solvent in native ubiquitin (as supported by accessible surface area calculations), and Gibbs energy contributions associated with charge desolvation upon folding (a source of pK shifts) are small; (2) charge-charge interactions (another source of pK shifts upon folding) are screened out in concentrated guanidinium chloride solutions. We have also characterized the thermal unfolding of both proteins using differential scanning calorimetry. Unfolding Gibbs energy changes calculated from the calorimetric data do depend strongly on pH, a result that we attribute to the pH dependence of charge-charge interactions (not eliminated in the absence of guanidine). In fact, we find good agreement between the difference between the two series of experimental unfolding Gibbs energy changes (determined from high guanidine unfolding data by linear extrapolation and from thermal denaturation data in the absence of guanidine) and the theoretical estimates of the contribution from charge-charge interactions to the Gibbs energy change for ubiquitin unfolding obtained by using the solvent-accessibility-corrected Tanford-Kirkwood model, together with the Bashford-Karplus (reduced-set-of-sites) approximation. This contribution is found to be stabilizing at neutral pH, because most charged groups on the native protein interact mainly with groups of the opposite charge, a fact that, together with the absence of large charge-desolvation contributions, may explain the high stability of ubiquitin at neutral pH. In general, our analysis suggests the possibility of enhancing protein thermal stability by adequately redesigning the distribution of solvent-exposed, charged residues on the native protein surface.  相似文献   

5.
The guanidine hydrochloride denaturation of light meromyosins (LMMs) of fish (carp, sardine and greenling) and rabbit was investigated to determine their structural stability quantitatively. The circular dichroism (CD) and fluorescence spectroscopies were applied to monitor denaturation. The CD results indicate that the LMM α-helix undergoes a two-step unfolding. The free energy of denaturation was calculated based on the linear extrapolation method and the denaturant binding model. Total free energies of the two-step unfolding of the α-helix are related to the water temperatures in which the fish live and the body temperature of rabbit. The stability of α-helical structure of LMM was in the following descending order: rabbit>carp>sardine>greenling. The free energies of denaturation obtained by tryptophan fluorescence differ from the free energies of the unfolding α-helix. The data from the two spectroscopic measurements are discussed along with the conformational changes of LMMs.  相似文献   

6.
We monitored the unfolding of human serum albumin (HSA) and glycated human serum albumin (gHSA) subjected to guanidine hydrochloride (GndHCl) by using fluorescence and circular dichroism (CD) spectroscopy. A two-state model with sloping baselines best described the Trp-214 fluorescence unfolding measurements, while a three-state model best described the far-UV CD unfolding data. Glycation of HSA increased the [D](50%) point by approximately 0.20M. This corresponded to an increase in the free energy of unfolding of gHSA relative to HSA of 2.6kJ/mol. The intrinsic fluorescence of Trp-214 in gHSA is 0.72 of that of HSA and the far-UV CD spectrum of gHSA is nearly identical to that of HSA. These results showed that glycation altered the local structure around Trp-214 while not significantly impacting the secondary structure, and this alteration translated into an overall change in the stability of gHSA compared to HSA.  相似文献   

7.
Superoxide dismutases are enzymes that protect biological systems against oxidative damage caused by superoxide radicals. In this paper, a detailed characterization is presented on the stability of SmSOD, the dimeric cambialistic superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans, towards temperature and guanidine hydrochloride. Thermal and chemical denaturations were investigated by means of circular dichroism, fourth-derivative UV spectroscopy and fluorescence measurements. Data indicate that SmSOD is endowed with a significant thermostability and that both its thermal and guanidine hydrochloride-induced unfolding processes occur through a three-state model, characterized by a catalytically active dimeric intermediate species. To our knowledge, SmSOD is the smallest known dimeric protein that populates a well-structured active dimeric rather than a monomeric intermediate during unfolding processes.  相似文献   

8.
Lens alpha-crystallin is a 600-800-kDa heterogeneous oligomer protein consisting of two subunits, alphaA and alphaB. The homogeneous oligomers (alphaA- and alphaB-crystallins) have been prepared by recombinant DNA technology and shown to differ in the following biophysical/biochemical properties: hydrophobicity, chaperone-like activity, subunit exchange rate, and thermal stability. In this study, we studied their thermodynamic stability by unfolding in guanidine hydrochloride. The unfolding was probed by three spectroscopic parameters: absorbance at 235 nm, Trp fluorescence intensity at 320 nm, and far-UV circular dichroism at 223 nm. Global analysis indicated that a three-state model better describes the unfolding behavior than a two-state model, an indication that there are stable intermediates for both alphaA- and alphaB-crystallins. In terms of standard free energy (DeltaG(NU)(H(2)(O))), alphaA-crystallin is slightly more stable than alphaB-crystallin. The significance of the intermediates may be related to the functioning of alpha-crystallins as chaperone-like molecules.  相似文献   

9.
The unfolding induced by guanidine hydrochloride of the small protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus has been investigated by means of circular dichroism and fluorescence measurements. At neutral pH and room temperature the midpoint of the transition occurred at 4M guanidine hydrochloride. Thermodynamic information was obtained by means of both the linear extrapolation model and the denaturant binding model, in the assumption of a two-state N<==>D transition. A comparison with thermodynamic data determined from the thermal unfolding of Sso7d indicated that the denaturant binding model has to be preferred. Finally, it is shown that Sso7d is the most stable against both temperature and guanidine hydrochloride among a set of globular proteins possessing a very similar 3D structure.  相似文献   

10.
Nucleoside hydrolases are metalloproteins that hydrolyze the N-glycosidic bond of β-ribonucleosides, forming the free purine/pyrimidine base and ribose. We report the stability of the two hyperthermophilic enzymes Sulfolobus solfataricus pyrimidine-specific nucleoside hydrolase (SsCU-NH) and Sulfolobus solfataricus purine-specific inosineadenosine- guanosine nucleoside hydrolase (SsIAG-NH) against the denaturing action of temperature and guanidine hydrochloride by means of circular dichroism and fluorescence spectroscopy. The guanidine hydrochloride-induced unfolding is reversible for both enzymes as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. The evidence that the denaturation of SsIAG-NH carried out in the presence of reducing agents proved to be reversible indicates that the presence of disulfide bonds interferes with the refolding process of this enzyme. Both enzymes are highly thermostable and no thermal unfolding transition can be obtained up to 108°C. SsIAG-NH is thermally denatured under reducing conditions (T(m)=93°C) demonstrating the contribution of disulfide bridges to enzyme thermostability.  相似文献   

11.
The unfolding process of human serum albumin between pH 5.4 and 9.9 was studied by chemical and thermal denaturations. The experimental results showed that there is no correlation between the stability of albumin at different pH values determined by both methods. The free energy change of unfolding versus concentration of guanidine showed a close dependence on the pH, suggesting that the variation of the electrical charge of albumin influences the final state of the unfolded form of the protein. Spectroscopic techniques, such as native fluorescence of the protein and circular dichroism, demonstrated that the unfolded state of the protein obtained from both methods possesses a different helical content. The solvophobic effect and the entropy of the chains have no influence on the final unfolding state when the protein is unfolded by thermal treatment, while, when the protein is unfolded by chemical denaturants, both effects depend on the medium pH. The results indicate that guanidine and urea interact with albumin by electrostatic forces, yielding a randomly coiled conformation in its unfolded state, while thermal denaturation produces a molten globule state and the aggregation of the protein; therefore, both methods yield different structurally unfolded states of the albumin.  相似文献   

12.
Thermodynamic parameters describing the conformational stability of the histidine-containing phosphocarrier protein from Streptomyces coelicolor, scHPr, have been determined by steady-state fluorescence measurements of isothermal urea-denaturations, differential scanning calorimetry at different guanidinium hydrochloride concentrations and, independently, by far-UV circular dichroism measurements of isothermal urea-denaturations, and thermal denaturations at fixed urea concentrations. The equilibrium unfolding transitions are described adequately by the two-state model and they validate the linear free-energy extrapolation model, over the large temperature range explored, and the urea concentrations used. At moderate urea concentrations (from 2 to 3 m), scHPr undergoes both high- and low-temperature unfolding. The free-energy stability curves have been obtained for the whole temperature range and values of the thermodynamic parameters governing the heat- and cold-denaturation processes have been obtained. Cold-denaturation of the protein is the result of the combination of an unusually high heat capacity change (1.4 +/- 0.3 kcal.mol(-1).K(-1), at 0 m urea, being the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements) and a fairly low enthalpy change upon unfolding at the midpoint temperature of heat-denaturation (59 +/- 4 kcal.mol(-1), the average of the fluorescence, circular dichroism and differential scanning calorimetry measurements). The changes in enthalpy (m(DeltaH(i) )), entropy (m(DeltaS(i) )) and heat capacity (m(DeltaC(pi) )), which occur upon preferential urea binding to the unfolded state vs. the folded state of the protein, have also been determined. The m(DeltaH(i) ) and the m(DeltaS(i) ) are negative at low temperatures, but as the temperature is increased, m(DeltaH(i) ) makes a less favourable contribution than m(DeltaS(i) ) to the change in free energy upon urea binding. The m(DeltaC(pi) ) is larger than those observed for other proteins; however, its contribution to the global heat capacity change upon unfolding is small.  相似文献   

13.
A novel protease from the halophilic bacterium Geomicrobium sp. EMB2 (MTCC 10310) is described. The activity of the protease was modulated by salt, and it exhibited remarkable stability in organic solvents, at alkaline pH, and in other denaturing conditions. The structural changes under various denaturing conditions were analyzed by measurements of intrinsic fluorescence and circular dichroism spectroscopy. Circular dichroism showed that the secondary structure of the protease was predominantly α-helical but unfolded in salt-free medium. The structure is regained by inclusion of NaCl in the range of 2–5%. The presence of NaCl exerted a protective effect against thermal, organic solvent, and guanidine hydrochloride denaturation by preventing unfolding.  相似文献   

14.
The multi-domain enzyme isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix was studied by denaturant-induced unfolding. At pH 7.5, changes in circular dichroism ellipticity and intrinsic fluorescence showed a complex unfolding transition, whereas at pH 3.0, an apparently two-state and highly reversible unfolding occurred. Analytical ultracentrifugation revealed the dissociation from dimer to monomer at pH 3.0. The thermodynamic and kinetic stability were studied at pH 3.0 to explore the role of inter-domain interactions independently of inter-subunit interplay on the wild type and R211M, a mutant where a seven-membered inter-domain ionic network has been disrupted. The unfolding and folding transitions occurred at slightly different denaturant concentrations even after prolonged equilibration time. The difference between the folding and the unfolding profiles was decreased in the mutant R211M. The apparent Gibbs free energy decreased approximately 2 kcal/mol and the unfolding rate increased 4.3-fold in the mutant protein, corresponding to a decrease in activation free energy of unfolding of 0.86 kcal/mol. These results suggest that the inter-domain ionic network might be responsible for additional stabilization through a significant kinetic barrier in the unfolding pathway that could also explain the larger difference observed between the folding and unfolding transitions of the wild type.  相似文献   

15.
Osmolytes increase the thermodynamic conformational stability of proteins, shifting the equilibrium between native and denatured states to favor the native state. However, their effects on conformational equilibria within native-state ensembles of proteins remain controversial. We investigated the effects of sucrose, a model osmolyte, on conformational equilibria and fluctuations within the native-state ensembles of bovine pancreatic ribonuclease A and S and horse heart cytochrome c. In the presence of sucrose, the far- and near-UV circular dichroism spectra of all three native proteins were slightly altered and indicated that the sugar shifted the native-state ensemble toward species with more ordered, compact conformations, without detectable changes in secondary structural contents. Thermodynamic stability of the proteins, as measured by guanidine HCl-induced unfolding, increased in proportion to sucrose concentration. Native-state hydrogen exchange (HX) studies monitored by infrared spectroscopy showed that addition of 1 M sucrose reduced average HX rate constants at all degrees of exchange of the proteins, for which comparison could be made in the presence and absence of sucrose. Sucrose also increased the exchange-resistant core regions of the proteins. A coupling factor analysis relating the free energy of HX to the free energy of unfolding showed that sucrose had greater effects on large-scale than on small-scale fluctuations. These results indicate that the presence of sucrose shifts the conformational equilibria toward the most compact protein species within native-state ensembles, which can be explained by preferential exclusion of sucrose from the protein surface.  相似文献   

16.
The structural stability of the protein, phycocyanin isolated from two strains of cyanophyta, Synechococcus lividus (thermophile) and Phormidium luridum (mesophile), are investigated by comparative thermal and denaturant unfolding, using differential scanning calorimetry, visible absorption spectrophotometry, and circular dichroism. The thermophilic protein exhibits a much higher temperature and enthalpy of unfolding from the native to the denatured state. The concentration of urea at half-completion of thermal unfolding is essentially the same between the thermophilic and mesophilic proteins; in contrast, the corresponding temperature and the enthalpy of thermal unfolding are much higher for the thermophilic protein. In addition, the concentration of urea at which the non-thermal (denaturant) unfolding of protein is half-completed, as detected by either circular dichroism or absorption spectroscopy, is significantly higher in the thermophilic protein, while the apparent free energy of unfolding only shows a moderate difference between the two proteins. The distinct differences in the enthalpy of thermal unfolding and the free energy of denaturant unfolding are interpreted in terms of a significant entropy change associated with the unfolding of these proteins. This entropy contribution is much higher in the thermophilic protein, and may be derived from its more rigid overall structure that possesses higher internal hydrophobicity and stronger internal packing.  相似文献   

17.
Porcine odorant binding protein (pOBP) contains a single disulphide bridge linking residues Cys63 and Cys155. In order to get information on the role played by this crosslink in determining the structural and functional properties of the protein, we substituted these two Cys residues with two Ala residues by site directed mutagenesis and investigated the changes in folding, stability and functional features, as detected by fluorescence and circular dichroism measurements. In particular, we studied both chemical and thermal unfolding/refolding processes under equilibrium conditions, the first induced by guanidinium hydrochloride and the second by raising the temperature from 15 to 90 degrees C. Chemical unfolding curves, as obtained from intrinsic fluorescence and far-UV circular dichroism data, can be fitted by a simple two-state cooperative sigmoidal function; however, their partial overlap (C(1/2)=0.57+/-0.05 from fluorescence and 0.66+/-0.03 from CD) suggests the formation of an intermediate, which lacks tertiary structural features. Thermal unfolding was found to be reversible if the protein was heated up to 65 degrees C, but irreversible above that temperature because of aggregation. The thermodynamic unfolding parameters of this double mutant protein, when compared to those of the wild type protein, clearly point out the important role played by the disulphide bridge on the stability and function of this protein family and probably of many other lipocalins.  相似文献   

18.
The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 +/- 0.4 kcal.mol-1, while a lower value (6.4 +/- 0.4 kcal.mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 +/- 0.3 kcal.mol-1 and 4.8 +/- 0.3 kcal.mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL.mol-1 for Ile7Ser and -55 mL.mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins.  相似文献   

19.
The effects of guanidine hydrochloride and high temperature on human glycophorin and sialic acid-free glycophorin were monitored by circular dichroism, viscosity, and fluorescence of 1-anilino-8-naphthalane sulfonate (ANS). The following observations were made: 1. Glycophorin and its sialic acid-free counterpart are unusually stable to both guanidine . HCl and heat. 2. CD and viscosity measurements indicate that guanidine . HCl neither causes a cooperative unfolding nor generates a random coil. 3. The ANS binding site is much more sensitive to guanidine . HCl than the ellipticity at 220 nm (theta 220). 4. The effect of temperature on CD is reversible whereas the effect of guanidine . HCl is not. 5. The carbohydrate moiety influences the viscosity, and also contributes to the changes in theta 220 when solutions of glycophorin are heated. These unusual properties indicate a complex mechanism of unfolding for this structurally stable macromolecule.  相似文献   

20.
I Bj?rk  E Pol 《FEBS letters》1992,299(1):66-68
Far-ultraviolet circular dichroism and tryptophan fluorescence measurements showed that the reversible unfolding of the cysteine proteinase inhibitor, chicken cystatin, by guanidinium chloride is a two-step process with transition midpoints at approximately 3.4 and approximately 5.4 M denaturant. The partially unfolded intermediate had both far- and near-ultraviolet circular dichroism and fluorescence emission spectra comparable to those of the native protein. The largely retained tertiary structure suggests that the intermediate represents a species in which a separate region of lower stability has been unfolded, rather than an intermediate of the 'molten globule' type. Such a structurally independent region is apparent in the three-dimensional structure of the inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号