首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic mice expressing a dominant mutation in the gene for the phototransduction molecule rhodopsin undergo retinal degeneration similar to that experienced by patients with the retinal degenerative disease, retinitis pigmentosa (RP). Although the mutation is thought to cause photoreceptor degeneration in a cell‐autonomous manner, the fact that rod photoreceptor degeneration is slowed in chimeric wild‐type/mutant mice suggests that cellular interactions are also important for maintaining photoreceptor survival. To more fully characterize the nature of the cellular interactions important for rod degeneration in the RP mutant mice, we have used an in vitro approach. We found that when the retinas of the transgenic mice were isolated from the pigmented epithelium and cultured as explants, the rod photoreceptors underwent selective degeneration with a similar time course to that observed in vivo. This selective rod degeneration also occurred when the cells were dissociated and cultured as monolayers. These data indicate that the mutant rod photoreceptors degenerate when removed from their normal cellular relationships and without contact with the pigmented epithelium, thus confirming the relative cell autonomy of the mutant phenotype. We next tested whether normal retinal cells could rescue the mutant photoreceptors in a coculture paradigm. Coculture of transgenic mouse with wild‐type mouse or rat retinal cells significantly enhanced transgenic rod photoreceptor survival; this survival‐promoting activity was diffusible through a filter, was heat labile, and not present in transgenic retinal cells. Several peptide growth factors known to be present in the retina were tested as the potential survival‐promoting molecule responsible for the effects of the conditioned medium; however, none of them promoted survival of the photoreceptors expressing the Pro23His mutant rhodopsin. Nevertheless, we were able to demonstrate that the mutant photoreceptors could be rescued by an antagonist to a retinoic acid receptor, suggesting that the endogeneous survival‐promoting activity may function through this pathway. These data thus confirm and extend the findings of previous work that local trophic interactions are important in regulating rod photoreceptor degeneration in retinitis pigmentosa. A diffusible factor found in normal but not transgenic retinal cells has a protective effect on the survival of rod photoreceptors from Pro23His mutant rhodopsin mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 475–490, 1999  相似文献   

2.
Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival   总被引:6,自引:0,他引:6  
Satoh AK  Ready DF 《Current biology : CB》2005,15(19):1722-1733
BACKGROUND: Arrestins are pivotal, multifunctional organizers of cell responses to GPCR stimulation, including cell survival and cell death. In Drosophila norpA and rdgC mutants, endocytosis of abnormally stable complexes of rhodopsin (Rh1) and fly photoreceptor Arrestin2 (Arr2) triggers cell death, implicating Rh1/Arr2-bearing endosomes in pro-cell death signaling, potentially via arrestin-mediated GPCR activation of effector kinase pathways. In order to further investigate arrestin function in photoreceptor physiology and survival, we studied Arr2's partner photoreceptor arrestin, Arr1, in developing and adult Drosophila compound eyes. RESULTS: We report that Arr1, but not Arr2, is essential for normal, light-induced rhodopsin endocytosis. Also distinct from Arr2, Arr1 is essential for light-independent photoreceptor survival. Photoreceptor cell death caused by loss of Arr1 is strongly suppressed by coordinate loss of Arr2. We further find that Rh1 C-terminal phosphorylation is essential for light-induced endocytosis and also for translocation of Arr1, but not Arr2, from dark-adapted photoreceptor cytoplasm to photosensory membrane rhabdomeres. In contrast to a previous report, we do not find a requirement for photoreceptor myosin kinase NINAC in Arr1 or Arr2 translocation. CONCLUSIONS: The two Drosophila photoreceptor arrestins mediate distinct and essential cell pathways downstream of rhodopsin activation. We propose that Arr1 mediates an endocytotic cell-survival activity, scavenging phosphorylated rhodopsin and thereby countering toxic Arr2/Rh1 accumulation; elimination of toxic Arr2/Rh1 in double mutants could thus rescue arr1 mutant photoreceptor degeneration.  相似文献   

3.
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.  相似文献   

4.
Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance.  相似文献   

5.
In many blinding diseases of the retina, loss of function and thus severe visual impairment results from apoptotic cell death of damaged photoreceptors. In an attempt to survive, injured photoreceptors generate survival signals to induce intercellular protective mechanisms that eventually may rescue photoreceptors from entering an apoptotic death pathway. One such endogenous survival pathway is controlled by leukemia inhibitory factor (LIF), which is produced by a subset of Muller glia cells in response to photoreceptor injury. In the absence of LIF, survival components are not activated and photoreceptor degeneration is accelerated. Although LIF is a crucial factor for photoreceptor survival, the detailed mechanism of its induction in the retina has not been elucidated. Here, we show that administration of tumor necrosis factor-alpha (TNF) was sufficient to fully upregulate Lif expression in Muller cells in vitro and the retina in vivo. Increased Lif expression depended on p38 mitogen-activated protein kinase (MAPK) since inhibition of its activity abolished Lif expression in vitro and in vivo. Inhibition of p38 MAPK activity reduced the Lif expression also in the model of light-induced retinal degeneration and resulted in increased cell death in the light-exposed retina. Thus, expression of Lif in the injured retina and activation of the endogenous survival pathway involve signaling through p38 MAPK.  相似文献   

6.
Mice or humans with photoreceptor degenerations experience permeability and dropout of retinal capillaries. Loss of photoreceptors results in decreased oxygen usage and thinning of the retina with increased oxygen delivery to the inner retina. To investigate the possibility that increased tissue oxygen plays a role in the vascular damage, we exposed adult mice to hyperoxia, which also increases oxygen in the retina. After 1, 2, or 3 weeks of hyperoxia, there was a statistically significant decrease in retinal vascular density that was not reversible, and endothelial cell apoptosis was demonstrated by TUNEL staining. Mice exposed to hyperoxia and mice with photoreceptor degeneration both showed decreased expression of VEGF in the retina. After complete or near-complete degeneration of photoreceptors, there was increased expression of VEGF in RPE cells, which may explain the association of photoreceptor degeneration and neovascularization in or around the RPE. Increased expression of VEGF in photoreceptors of transgenic mice failed to prevent hyperoxia-induced retinal capillary dropout. These data suggest that increased oxygen in the retina, either by increased inspired oxygen or by photoreceptor degeneration, results in endothelial cell death and dropout of capillaries. Decreased expression of VEGF may be a contributing factor, but the situation may be more complicated for mature retinal vessels than it is for immature vessels, because VEGF replacement does not rescue mature retinal vessels, suggesting that other factors may also be involved.  相似文献   

7.
8.
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness in humans. Previously, excessive activation of enzymes belonging to the poly-ADP-ribose polymerase (PARP) group was shown to be involved in photoreceptor degeneration in the human homologous rd1 mouse model for RP. Since there are at least 16 different PARP isoforms, we investigated the exact relevance of the predominant isoform - PARP1 - for photoreceptor cell death using PARP1 knock-out (KO) mice. In vivo and ex vivo morphological analysis using optic coherence tomography (OCT) and conventional histology revealed no major alterations of retinal phenotype when compared to wild-type (wt). Likewise, retinal function as assessed by electroretinography (ERG) was normal in PARP1 KO animals. We then used retinal explant cultures derived from wt, rd1, and PARP1 KO animals to test their susceptibility to chemically induced photoreceptor degeneration. Since photoreceptor degeneration in the rd1 retina is triggered by a loss-of-function in phosphodiesterase-6 (PDE6), we used selective PDE6 inhibition to emulate the rd1 situation on non-rd1 genotypes. While wt retina subjected to PDE6 inhibition showed massive photoreceptor degeneration comparable to rd1 retina, in the PARP1 KO situation, cell death was robustly reduced. Together, these findings demonstrate that PARP1 activity is in principle dispensable for normal retinal function, but is of major importance for photoreceptor degeneration under pathological conditions. Moreover, our results suggest that PARP dependent cell death or PARthanatos may play a major role in retinal degeneration and highlight the possibility to use specific PARP inhibitors for the treatment of RP.  相似文献   

9.
Both proNGF and the neurotrophin receptor p75 (p75(NTR)) are known to regulate photoreceptor cell death caused by exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a necessary p75(NTR) co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by intense lighting. We report here that light-exposed albino mice showed sortilin, p75(NTR), and proNGF expression in the outer nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells subjected to intense illumination expressed sortilin and p75(NTR) and released proNGF into the culture medium. Pharmacological blockade of sortilin with either neurotensin or the "pro" domain of proNGF (pro-peptide) favored the survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the receptor complex p75(NTR)/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose sortilin as a putative target for intervention in hereditary retinal dystrophies.  相似文献   

10.
11.
Apoptosis is the mode of photoreceptor cell death in inherited and induced retinal degeneration. However, the molecular mechanisms of photoreceptor cell death in human cases and animal models of retinal dystrophies remain undefined. Exposure of Balb/c mice to excessive levels of white light results in photoreceptor apoptosis. This study delineates the molecular events occurring during and subsequent to the induction of retinal degeneration by exposure to white light in Balb/c mice. We demonstrate an early increase in intracellular calcium levels during photoreceptor apoptosis, an event that is accompanied by significant superoxide generation and mitochondrial membrane depolarization. Furthermore, we show that inhibition of neuronal nitric-oxide synthase (nNOS) by 7-nitroindazole is sufficient to prevent retinal degeneration implicating a key role for neuronal nitric oxide (NO) in this model. We demonstrate that inhibition of guanylate cyclase, a downstream effector of NO, also prevents photoreceptor apoptosis demonstrating that guanylate cyclase too plays an essential role in this model. Finally, our results demonstrate that caspase-3, frequently considered to be one of the key executioners of apoptosis, is not activated during retinal degeneration. In summary, the data presented here demonstrate that light-induced photoreceptor apoptosis in vivo is mediated by the activation of nNOS and guanylate cyclase and is caspase-3-independent.  相似文献   

12.
Slow, progressive rod degeneration followed by cone death leading to blindness is the pathological signature of all forms of human retinitis pigmentosa (RP). Therapeutic schemes based on intraocular delivery of neuroprotective agents prolong the lifetime of photoreceptors and have reached the stage of clinical trial. The success of these approaches depends upon optimization of chronic supply and appropriate combination of factors. Environmental enrichment (EE), a novel neuroprotective strategy based on enhanced motor, sensory and social stimulation, has already been shown to exert beneficial effects in animal models of various disorders of the CNS, including Alzheimer and Huntington disease. Here we report the results of prolonged exposure of rd10 mice, a mutant strain undergoing progressive photoreceptor degeneration mimicking human RP, to such an enriched environment from birth. By means of microscopy of retinal tissue, electrophysiological recordings, visual behaviour assessment and molecular analysis, we show that EE considerably preserves retinal morphology and physiology as well as visual perception over time in rd10 mutant mice. We find that protective effects of EE are accompanied by increased expression of retinal mRNAs for CNTF and mTOR, both factors known as instrumental to photoreceptor survival. Compared to other rescue approaches used in similar animal models, EE is highly effective, minimally invasive and results into a long-lasting retinal protection. These results open novel perspectives of research pointing to environmental strategies as useful tools to extend photoreceptor survival.  相似文献   

13.
Light‐induced retinal degeneration is characterized by photoreceptor cell death. Many studies showed that photoreceptor demise is caspase‐independent. In our laboratory we showed that leucocyte elastase inhibitor/LEI‐derived DNase II (LEI/L‐DNase II), a caspase‐independent apoptotic pathway, is responsible for photoreceptor death. In this work, we investigated the activation of a pro‐survival kinase, the protein kinase C (PKC) zeta. We show that light exposure induced PKC zeta activation. PKC zeta interacts with LEI/L‐DNase II and controls its DNase activity by impairing its nuclear translocation. These results highlight the role of PKC zeta in retinal physiology and show that this kinase can control caspase‐independent pathways.  相似文献   

14.
15.
We have examined cyclic GMP concentrations, guanylate cyclase activities, and cyclic GMP phosphodiesterase (PDE) activities in developing retinas of congenic mice with different allelic combinations at the retinal degeneration (rd) and retinal degeneration slow (rds) loci. Although guanylate cyclase activities were found to be uniformly low in the mutant retinas, striking differences in PDE activity and cyclic GMP levels were observed in retinas of the various genotypes. Homozygous rds mice, which lack receptor outer segments, showed reduced retinal PDE activity and cyclic GMP concentration in comparison to normal animals. In heterozygous rds/+ mice with abnormal outer segments, the levels were intermediate. In retinas of homozygous rd mice, PDE activity was lower than in rds retinas and cyclic GMP levels were much higher. In mice homozygous for both rd and rds genes, retinal PDE activities were even lower than in single homozygous rd mice; the cyclic GMP level reached the same high value as in the rd animals, persisted for a longer time at this high level, and did not correlate with the rate of photoreceptor cell loss. Thus, a marked variation in PDE activity appears to be the major manifestation of abnormal outer segment differentiation and eventual degeneration of photoreceptor cells in these neurological mutants. An increased cyclic GMP level seems to be an essential corollary in the expression of the rd gene even in the absence of outer segments, but it appears unlikely that an abnormally high nucleotide level in itself causes photoreceptor cell death.  相似文献   

16.
Retinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1) by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout) and later stages of secondary cone death (rd1 mutants). Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP.  相似文献   

17.
18.
Abstract: The effect of docosahexaenoic acid (DHA) on neuronal survival was studied in cultured cells isolated from newborn rat retina. In vivo, the content of DHA in the retina increased nearly fourfold from days 2 to 12 after birth, whereas in retinal cells in culture it remained constant. Unlike amacrine cells, the photoreceptor cells in control cultures underwent a selective degeneration, starting at day 7, that led to their massive death by day 11. The addition of DHA at day 7 led to its active incorporation by the cultures, increasing from 6 to 21% of total fatty acids in cell lipids, and completely prevented photo-receptor cell death. When other fatty acids were tested, both neuronal fatty acid composition and photoreceptor death were the same as in control cultures. These results indicate that DHA is specifically required for the survival of retinal photoreceptors.  相似文献   

19.
Retinal degenerations are the major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Several genes causing these genetic diseases have been identified, however the molecular characterization of a high percentage of patients affected by retinitis pigmentosa (RP), a common form of retinal degeneration, is still unknown. The high genetic heterogeneity of these diseases hampers the comprehension of the pathogenetic mechanism causing photoreceptor cell death. Therapies are not available yet and for this reason there is a lot of interest in understanding the etiology and the pathogenesis of these disorders at a cellular and molecular level. Some common features have been identified in different forms of RP. Apoptosis was reported to be the final outcome in all RP animal models and patients analyzed so far. We recently identified two apoptotic pathways co-activated in photoreceptors undergoing cell death in the retinal degeneration (rd1) mouse model of autosomal recessive RP. Our studies opened new perspectives together with many questions that require deeper analyses in order to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise may represent a promising curing strategy that needs to be exploited for retinal degeneration.  相似文献   

20.
For most neurodegenerative diseases the precise duration of an individual cell''s death is unknown, which is an obstacle when counteractive measures are being considered. To address this, we used the rd1 mouse model for retinal neurodegeneration, characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cyclic guanosine-mono-phosphate (cGMP) levels. Using cellular data on cGMP accumulation, cell death, and survival, we created mathematical models to simulate the temporal development of the degeneration. We validated model predictions using organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast. Together, photoreceptor data and modeling for the first time delineated three major cell death phases in a complex neuronal tissue: (1) initiation, taking up to 36 h, (2) execution, lasting another 40 h, and finally (3) clearance, lasting about 7 h. Surprisingly, photoreceptor neurodegeneration was noticeably slower than necrosis or apoptosis, suggesting a different mechanism of death for these neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号