首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lag in cresolase activity and inhibition by excess tyrosine of mushroom tyrosinase which was observed when assayed at pH 6.8 was found to be absent when assayed at pH 5.0. The absence of lag and inhibition by excess tyrosine of tyrosinase at pH 5.0 were brought about only after the enzyme was kept at pH 5.0, at 0-4 degrees C, for 1.5 h. The enzyme kept at pH 5.0 for 1.5-3 h at 0-4 degrees C when brought back to pH 6.8, acquires lag and inhibition by excess tyrosine when its activity was measured at pH 6.8. The pH-dependent changes in the kinetic properties of the mushroom tyrosinase are similar to the pH-dependent changes in the kinetic properties of tyrosinase from B-16 murine melanoma and human skin, and thus appear to be a general property of tyrosinase from diverse sources.  相似文献   

2.
Murine melanoma melanosomal tyrosinase, solubilised at pH 6.8 and 1% Igepal, exhibits a lag in cresolase activity which increases with increasing concentration of tyrosine. The enzyme, solubilised at pH 5.0 and assayed at pH 5.0, does not exhibit lag even at inhibitory concentrations of tyrosine while the same enzyme when assayed at pH 6.8 exhibits characteristic lag. When the enzyme was solubilised from a melanosomal fraction with detergent/water without any buffer, significant linear activity for 2 h was seen at an inhibitory concentration of tyrosine, indicating for the first time the presence of a form of tyrosinase without lag and inhibition by excess tyrosine. Exposure of the enzyme solubilised in buffer/detergent at pH 6.8 to rapid decrease in pH to 5.0 or 4.7 makes the enzyme remain irreversibly in the form without characteristic lag, even at an inhibitory concentration of tyrosine and at pH 6.8. These results may be interpreted as follows. The enzyme at pH 6.8 exists in the E form with an allosteric site for tyrosine. Decrease of the pH of the enzyme solution from 6.8 to 5.0 or 4.7 by dialysis results in the reversible protonation of the enzyme, which no longer binds tyrosine at its allosteric site and consequently inhibition by excess tyrosine and lag were not observed at acidic pH. However, if the enzyme was rapidly brought to pH 5.0 from 6.8 it remains irreversibly in the protonated form even at pH 6.8. Ascorbic acid acts as an effective reductant for the hydroxylation of tyrosine by tyrosinase, while 3,4-dihydroxyphenylalanine is both an effective reductant and counteracts the inhibition by tyrosine at pH 6.8.  相似文献   

3.
Citrate stimulates cresolase activity of tyrosinase from B-16 murine melanoma and human skin. Maximal stimulation by citrate was obtained at 2 mM, and stimulation was decreased at higher concentrations. Citrate stimulates tyrosinase not only from mammalian sources but also from mushroom. The stimulation was not due to reversal of inhibition of enzyme activity by excess tyrosine. On rapid decrease in pH of the enzyme solution from 6.8 to 5.0-5.2, the enzyme is no longer inhibited by excess tyrosine even when its activity was assayed at pH 6.8. Citrate also stimulates this form of enzyme. However, the stimulation is more at acidic pH than at pH 6.8. At higher concentrations of citrate the stimulatory effect decreases at both pH 5.0 and pH 6.8. Inhibition of this enzyme occurs at higher concentrations (22 mM) at pH 6.8. The physiological role of stimulation of cresolase activity of tyrosinase by citrate is yet to be unravelled.  相似文献   

4.
1. We have shown that the characteristic lag in cresolase activity of human skin tyrosinase at inhibitory concentration of tyrosine was absent at all pH values studied, i.e. pH 5.2, 5.7, 6.2 and 6.8, if the enzyme solubilized at low pH was used as the source of enzyme, but the same enzyme when dialysed against buffers of various pH values showed linear activity only at pH 5.2 and was not inhibited by excess tyrosine, whereas at higher pH values it exhibited a lag and inhibition by excess tyrosine. 2. However, the enzyme solubilized in buffer/detergent, pH 6.8, when dialysed against buffer of the same pH showed linear activity at pH 5.2 and non-linear activity at pH 6.8. 3. The water/detergent-solubilized enzyme from human skin melanosomes showed linear activity even at inhibitory concentrations of tyrosine at pH 5.2 and 6.8 up to 2 h, but acceleration of rate was observed after 2 h for the enzyme measured at pH 6.8. 4. After dialysis of the water/detergent-solubilized enzyme against double-glass-distilled water, it still exhibits linear activity at inhibitory concentration of tyrosines at pH 6.8 for the first 2 h, but the same enzyme when dialysed against 0.02 M-sodium phosphate buffer, pH 6.8, exhibits negligible activity up to 1/2 h, in contrast with considerable activity before dialysis during the same interval of time, but without any loss of activity at later intervals of incubation time. 5. On the basis of these results, it is concluded that the enzyme exists in at least two interconvertible forms, one without lag and inhibition by excess tyrosine and the other with lag and inhibition by excess tyrosine. These two forms are interconvertible only by gradual change in pH over a period of hours.  相似文献   

5.
Free tyrosine and tyrosine residues in various peptides and proteins are converted into dopa and dopa residues by tyrosinase (monophenol,L-dopa:oxygen oxidoreductase, EC 1.14.18.1) in the presence of reductants. The efficiency of the tyrosine-to-dopa conversion was examined under varied conditions, such as the substrate-to-tyrosine ratio, concentrations of reductant and oxygen in the reaction solution, pH, temperature and reaction time. The highest dopa yields were achieved with the following optimal conditions for hydroxylation: 0.1 M phosphate buffer at pH 7, 25 mM ascorbic acid, 1 mM tyrosine, 50 micrograms/ml tyrosinase and 20 degrees C. Using these conditions, up to 70% of free tyrosine was converted into dopa, and tyrosine residues in several synthetic peptides were also hydroxylated to dopa residues at ratios as high as free tyrosine. The preparation of hydroxylated analogues of the decapeptide (Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys), in particular, may contribute to a better understanding of adhesion in the dopa-containing mussel glue protein.  相似文献   

6.
Mutational mapping of the catalytic activities of human tyrosinase.   总被引:7,自引:0,他引:7  
Tyrosinase (EC 1.14.18.1) is a copper-containing metalloglycoprotein that catalyzes several steps in the melanin pigment biosynthetic pathway; the hydroxylation of tyrosine to L-3,4-dihydroxyphenylalanine (dopa) and the subsequent oxidation of dopa to dopaquinone. It has been proposed that tyrosinase is also able to oxidize 5,6-dihydroxyindole (DHI), a later product in the melanogenic pathway, to indole-5,6-quinone. Tyrosinase enzymatic activity is deficient in patients with classic type I oculocutaneous albinism (OCA), and more than 50 distinct mutations have now been identified in the tyrosinase genes of such patients. To determine the effects of the various tyrosinase gene mutations on the catalytic activities of the enzyme, we carried out site-directed mutagenesis of human tyrosinase cDNA, transiently expressed the mutant cDNAs in transfected HeLa cells, and assayed the resultant encoded proteins for tyrosine hydroxylase, dopa, and DHI oxidase activities, and resulting melanin production. The tyrosine hydroxylase activity of normal tyrosinase is thermostable, whereas its dopa oxidase and DHI oxidase activities are temperature-sensitive. Although all amino acid substitutions tested generally affected the dopa oxidase and DHI oxidase activities in parallel, several exerted distinctly different effects on the tyrosine hydroxylase activities. Together, these results confirm the DHI oxidase activity of mammalian tyrosinase and suggest that the dopa oxidase and DHI oxidase activities of tyrosinase share a common catalytic site, whereas the tyrosine hydroxylase catalytic site is at least partially distinct in the tyrosinase polypeptide.  相似文献   

7.
Tyrosinase from normal human skin was purified to high specific activity; 228 nmol of dopa formed/min/mg protein. The properties of the purified enzyme differ from those of the same enzyme in crude homogenates. The activity of the purified enzyme is not affected by dopa. It is not inhibited by excess tyrosine and exhibits no lag in its rate at 4 mm concentration of ascorbic acid. This preparation is free of peroxidase and yet will catalyze both hydroxylation of tyrosine to dopa and its further oxidation to dopa quinone with fourfold more activity with dopa as substrate suggesting that mammalian tyrosinase catalyzes both reactions rather than dopa oxidation alone as suggested by M. Okun, L. Edelstein, R. Patel, and B. Donnellan (1973, Yale J. Biol. Med.46, 535–540). A protein present in the cytosol and melanosomes that constitutes 30% of soluble epidermal proteins was purified and found to inhibit tyrosinase competitively with tyrosine. Its molecular weight was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 66,000.  相似文献   

8.
A method for isolation and purification of tyrosinase from the fungus Aspergillus flavipes 56003 was developed. The method includes extraction with water, concentration on DEAE-cellulose, gel-filtration on Acrylex P-150, and ion-exchange chromatography on DEAE-Toyopearl 650M. The tyrosinase was purified to apparent homogeneity according polyacrylamide gel electrophoresis and ultracentrifugation. The tyrosinase is a 130-kD protein with pI 4.6. It contains two copper atoms. The Km and Vmax for tyrosine hydroxylation are 0.3 mM and 1300 &mgr;moles/min per mg at pH 6.8, and for dehydrogenation of 3,4-dihydroxyphenylalanine (DOPA) they are 5 mM and 16000 &mgr;moles/min per mg, respectively. Hydroxylation of monophenols has a characteristic lag period. The rate of tyrosine and DOPA oxidation is maximal at pH 6.0-6.8. The half-life of the enzyme at 50 degrees C is 40 min. The hydroxylase activity of the tyrosinase is more stable at neutral pH, whereas the dehydrogenase activity is more stable at acidic pH (4.0). The absorption spectrum of the enzyme has a maximum at 290 mn and a shoulder in the 320-400-nm region.  相似文献   

9.
Mechanism of inhibition of melanogenesis by hydroquinone   总被引:5,自引:0,他引:5  
Hydroquinone (HQ) is one of the most effective inhibitors of melanogenesis in vitro and in vivo, and is widely used for the treatment of melanosis and other hyperpigmentary disorders. In an attempt to get some insight into the molecular mechanism of the depigmenting action, which is still very poorly understood, we have investigated the effect of HQ on the tyrosinase catalysed conversion of tyrosine to melanin. Incubation of 0.5 mM tyrosine with 0.07 U/ml tyrosinase in phosphate buffer at pH 6.8 in the presence of 0.5 mM HQ led to no detectable melanin formation, due to the preferential oxidation of HQ with respect to tyrosine (HPLC evidence). Kinetic investigations showed that HQ is a poorer substrate of tyrosinase than tyrosine; yet, it may be effectively oxidised in the presence of tyrosine owing to the generation of catalytic amounts of dopa acting as cofactor of tyrosinase. Product analysis of HQ oxidation with tyrosinase in the presence of dopa showed the predominant formation in the early stages of hydroxybenzoquinone (HBQ), arising from enzymic hydroxylation and subsequent oxidation of HQ, along with lower amounts of benzoquinone (BQ). These results suggest that the depigmenting activity of HQ may partly be related to the ability of the compound to act as an alternate substrate of tyrosinase, thereby competing for tyrosine oxidation in active melanocytes.  相似文献   

10.
Trypsin activated in a similar way both the tyrosine hydroxylase and the dopa-oxidasa activities of frog epidermis tyrosinase. Several electron donors reduced or eliminated the lag period for the hydroxylating enzyme. 4 x 10(-5) M dopa was particularly effective, but without affecting the stationary activity after lag period. Tyrosine hydroxylase had KM = 2.6 X 10(-3) M for tyrosine and 2 x 10(-3) M dopa was a competitive inhibitor with Ki = 5 x 10(-4) M. The enzyme was inactivated during its actuation. Data on thermal denaturation were similar to other obtained from dopa oxidase. Our results tend to confirm our previous hypothesis that the activatory process of the enzyme is accompanied by a spatial unfolding of the enzyme molecule.  相似文献   

11.
Fan Y  Flurkey WH 《Phytochemistry》2004,65(6):671-678
A group of tyrosinase isoforms with isoelectric points between 4.9 and 5.2 was isolated from gill tissue of Portabella mushrooms. Use of protease inhibitors was not able to increase the amount of latent forms significantly in crude extracts or to preserve latent tyrosinase activity during purification. The tyrosinase in gill tissue extracts showed latent activity above pH 5.5 and suppressed or displayed no latent activity below pH 5.5 when assayed in the presence of SDS. The purified isoforms showed monophenolase activity toward 4-hydroxyanisole but practically no activity toward tyrosine or tyramine. The purified isoforms showed greater activity toward catechol than either 4-methylcatechol, dopa, dopamine, chlorogenic acid, t-butylcatechol, or catechin. The Km for catechol was similar for the group of isolated isoforms (4.3 mM) compared to the isoforms in crude extracts (5.3 mM). Crude extracts showed several isoforms ranging from 50 to 230 kDa after partially denaturing SDS PAGE, while the purified isoforms showed molecular weights of 70 kDa.  相似文献   

12.
Under aerobic conditions, tyrosinase is inactivated by dopa as a result of suicide inactivation, and, under anaerobic conditions, as a result of irreversible inactivation. However, tyrosine protects the enzyme from being inactivated by dopa under anaerobic conditions. This paper describes how under aerobic conditions the enzyme acting on tyrosine is not directly inactivated but undergoes a process of indirect suicide inactivation provoked by reaction with the o-diphenol originated from the evolution of o-dopaquinone and accumulated in the reaction medium.  相似文献   

13.
The conversion of tyrosine into dopa [3-(3,4-dihydroxyphenyl)alanine] is the rate limiting step in the biosynthesis of melanins catalysed by tyrosinase. This hydroxylation reaction is characterized by a lag period, the extent of which depends on various parameters, notably the presence of a suitable hydrogen donor such as dopa or tetrahydropterin. We have now found that catalytic amounts of Fe2+ ions have the same effect as dopa in stimulating the tyrosine hydroxylase activity of the enzyme. Kinetic experiments showed that the shortening of the induction time depends on the concentration of the added metal and the nature of the buffer system used and is not suppressed by superoxide dismutase, catalase, formate or mannitol. Notably, Fe3+ ions showed only a small delaying effect on tyrosinase activity. Among the other metals which were tested, Zn2+, Co2+, Cd2+ and Ni2+ had no detectable influence, whereas Cu2+ and Mn2+ exhibited a marked inhibitory effect on the kinetics of tyrosine oxidation. These findings are discussed in the light of the commonly accepted mechanism of action of tyrosinase.  相似文献   

14.
A method for the isolation of tyrosinase is described, which involves preparative polyacrylamide gel electrophoresis, requires only 24 to 36 h to carry out, and yields ostensibly homogeneous enzyme. The ability of purified tyrosinase to utilize 3,4-dihydroxyphenylalanine (dopa) analogs as cofactors was determined for both of the reactions catalyzed by tyrosinase: (i) tyrosine hydroxylation and (ii) dopa oxidation and melanin formation. The cofactor analogs studied included those in which steric modifying groups were added and those in which substitutions were made at the location of the amine, carboxylic acid, or hydroxyl groups of dopa. The results indicate that each of these groups is essential for maximal enzyme activity and that each is optimally located for tyrosinase activation when in the precise steric conformation found in l-dopa.  相似文献   

15.
1. Melanosomal tyrosinase was isolated from normal C57B1 mice, and a comparison of the tyrosine-hydroxylation and dopa (3,4-dihydroxyphenylalanine)-oxidation activities of this enzyme was made. 2. The results indicate that in the absence of dopa cofactor, this enzyme is capable of tyrosine hydroxylation, but with very little subsequent dopa oxidation and melanin formation. 3. This mechanism of enzyme action may play an important role in the intracellular regulation of melanin formation. 4. Further, dopa appears to act as a positive allosteric effector for tyrosine hydroxylation by tyrosinase, in addition to its known activity as a hydrogen donor for the reaction.  相似文献   

16.
The effect of cysteine and glutathione on mammalian melanogenesis has been studied. It has been shown that their action is mediated by two different mechanisms. (a) The reaction of the thiol groups with dopaquinone after the tyrosinase-catalyzed oxidation of tyrosine and dopa. This mechanism leads to the formation of sulfhydryl-dopa conjugates and finally sulfur-containing pigments, phaeomelanins instead of eumelanins. This fact might produce an inhibition of melanogenesis due to the slower rate of chemical reactions involved in the polymerization of such thiol-conjugates when compared to that of indoles. (b) The direct interaction between the sulfhydryl compounds and the tyrosinase active site. This interaction may regulate the activity of the enzyme. It is shown that Harding-Passey mouse melanoma tyrosinase is more sensitive to sulfhydryl compounds than mushroom tyrosinase. Cysteine always produces an inhibition of the tyrosinase hydroxylase and dopa oxidase activities of melanoma tyrosinase, this inhibition becoming greater as the cysteine concentration increases. On the other hand, glutathione produces an activation of the tyrosine hydroxylase activity below 3 mM and an inhibition at higher concentrations. The limit between the enzymatic activation and inhibition appears at glutathione concentrations similar to the physiological levels of this compound found in melanocytes. Although the switch from eumelanogenesis to phaeomelanogenesis occurs at much lower concentrations of glutathione, taking into account these data it is discussed that this sulfhydryl compound may regulate not only the type but also the amount of melanin formed inside melanocytes.  相似文献   

17.
6-Tetrahydrobiopterin is known to bind to an allosteric site of tyrosinase to directly inhibit the enzyme. However, simultaneous measurements of ultraviolet-visible absorption spectra and oxygen consumption led us to conclude that the inhibition was due to oxidation of 6-tetrahydrobiopterin by dopaquinone. Immediately after addition of 6-tetrahydrobiopterin, tyrosinase stopped producing dopachrome from either tyrosine or dopa. Duration of inhibition was proportional to the concentration of added 6-tetrahydrobiopterin and the enzyme activity was fully restored after the inhibition. Surprisingly, there was a rapid consumption of oxygen during the inhibition period. In addition, absorption spectra indicated that the only reaction that occurred during the inhibition was oxidation of 6-tetrahydrobiopterin to 7,8-dihydrobiopterin. In the absence of tyrosine or dopa, tyrosinase did not oxidize 6-tetrahydrobiopterin, suggesting that a reaction intermediate between dopa and dopachrome was a target for the inhibition. We propose a new mechanism in which dopa is oxidized to dopaquinone and the latter, instead of producing dopachrome, is reduced back to dopa by 6-tetrahydrobiopterin.  相似文献   

18.
B16/F10 murine melanoma cells were grown for 24 and 36 h in Dulbecco's modified Eagle medium in presence of 10-20 mM trisodium citrate. The intracellular melanin concentration and the melanin secreted in the extracellular medium was estimated. It is observed that 20 mM citrate stimulates extracellular melanin secretion in B16/F10 melanoma cells by 200% at 36 h treatment. The intracellular melanin content increased by 90%. This stimulatory effect of citrate was totally abolished when these cells were grown in presence of 1 mM phenyl thiourea, a specific inhibitor of tyrosinase activity. Citrate (0.1-5 mM) had no effect on dopa oxidase activity either at pH 5.0 or at pH 6.8. There was no increase in the tyrosinase specific activity in presence of citrate. The increased melanin synthesis was shown to be due to stimulation of cellular tyrosine hydroxylase activity by citrate. It has been suggested that enhanced melanin synthesis results in an increased production of metabolites that are toxic to the growth of melanoma cells. We have studied the effect of citrate on cellular proliferation. Following 24 and 36 h treatment with citrate, the cells exhibited a dose-dependent decrease in proliferation. In presence of 20 mM citrate the cell number was only up to 50% of the control cultures after 36 h of incubation. The growth retardation was not due to cytotoxicity. Citrate, a natural metabolite, is a unique molecule which may be involved in the regulation of melanin biosynthetic pathway, since it enhances melanogenesis by increasing the hydroxylase activity of tyrosinase which is the regulatory enzyme of this pathway. These observations add further support to the critical role of intramelanosomal pH in regulation of melanogenesis.  相似文献   

19.
《Phytochemistry》1987,26(10):2675-2678
Tiron has a multiple effect on mushroom tyrosinase. At relatively low concentrations (up to 3.3 mM), Tiron extended the lag period of tyrosine hydroxylation appreciably, while at concentrations between 3.3 and 8.3 mM the lag period was shortened and approached that of the control. At concentrations above 10 mM, Tiron shortened the lag period of tyrosine hydroxylation compared with that of the control.Tiron, at relatively high concentrations (above 266 mM), inhibited the initial rate of dl-DOPA oxidation by mushroom tyrosinase and lowered the final level of dopachrome formed. Preincubation of mushroom tyrosinase with Tiron resulted in the inactivation of the enzyme, with 50 % inactivation of 650 μg enzyme occurring in the presence of 400 mM Tiron.  相似文献   

20.
This work describes a comparative study of the tyrosinase activity determined using three methods which are the most extensively employed; two radiometric assays using L-tyrosine as substrate (tyrosine hydroxylase and melanin formation activities) and one spectrophotometric assay using L-dopa (dopa oxidase activity). The three methods were simultaneously employed to measure the activities of the soluble, melanosomal, and microsomal tyrosinase isozymes from Harding-Passey mouse melanoma through their purification processes. The aim of this study was to find any correlation among the tyrosinase activities measured by the three different assays and to determine whether that correlation varied with the isozyme and its degree of purification. The results show that mammalian tyrosinase has a greater turnover number for L-dopa than for L-tyrosine. Thus, enzyme activity, expressed as mumol of substrate transformed per min, is higher in assays using L-dopa as substrate than those using L-tyrosine. Moreover, the percentage of hydroxylated L-tyrosine that is converted into melanin is low and is affected by several factors, apparently decreasing the tyrosinase activity measured by the melanin formation assay. Bearing these considerations in mind, average interassay factors are proposed. Their values are 10 to transform melanin formation into tyrosine hydroxylase activity, 100 to transform tyrosine hydroxylase into dopa oxidase activity, and 1,000 to transform melanin formation into dopa oxidase activity. Variations in these values due to the presence in the tyrosinase preparations of either inhibitors or regulatory factors in melanogenesis independent of tyrosinase are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号