首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrophoretic mobilities of adsorbed yeast ribonucleic acid have been measured as functions of pH, ionic strength, and biopolymer concentration and the results so obtained have been critically compared with those for adsorbed DNA. Like DNA, ribonucleic acid has also been found to reverse the positive charge of alumina owing to its adsorption on the solid-liquid interface. The mobilities of adsorbed RNA have been found to be less than those of adsorbed DNA under identical conditions. The observed mobilities of adsorbed heat- and alkali-denatured RNA are significantly less than those of adsorbed native RNA at a given pH and ionic strength of the medium. The electrophoretic mobilities as observed also show the evidence of RNA adsorption on the negatively charged surface of Dowex-50 resin, but practically no adsorption of RNA on the negatively charged glass surface has been predicted.  相似文献   

2.
The possibility to quantify free-flow electrophoresis (FFE) data was explored in application to 6 negatively charged polystyrene size standards in the size range of 73 to 762 nm diameter. Peak fraction numbers in FFE were shown to be proportional to mobilities of the particles, determined by capillary zone electrophoresis in the identical buffer. Standard deviations of peak fraction numbers demonstrate a high degree of intra-experimental reproducibility while inter-experimentally, a variability of 1 to 5 peak fraction numbers within 28 fractions was found. A relative mobility (Rf) scale for peak identification in FFE based on the free mobility of the dye, SPADNS, allowed for the utilization of the entire electrophoretic migration path but failed to improve the precision of fraction numbers in view of the substantial zone spreading of the dye. Mobility differences between particles increased upon lowering the ionic strength of the electrophoretic buffer. Peak width increased with particle size in inverse relation to ionic strength.  相似文献   

3.
V Brabec  E Palecek 《Biopolymers》1972,11(12):2577-2589
The adsorption of single-stranded polynucleotides and double-helical DNA on the dropping mercury electrode has been studied with the aid of Breyer's alternating current (a.c.) polarography. Our results indicate that all three constituents of polynucleotides (residues of bases, sugar, and phosphoric acid) are involved in the adsorption. At neutral pH their participation in adsorption depends on the ionic strength, the potential of the electrode, and the conformation of the polynucleotide in the solution. At an ionic strength of about 0.1, double-helical DNA is adsorbed electrostatically on a positively charged electrode surface by inadequately masked negative charges of the phosphate groups. At a higher ionic srength (about 0.5), this electrostatic adsorption is no longer detectable by using a.c. polarography; under these conditions it is probable that native DNA is adsorbed around the potential of the electrocapillary maximum with the aid of sugar residues and a few bases. Single-stranded polynucleotides, on the other hand, are primarily adsorbed by means of the bases. Desorption of double-helical DNA occurs around a potential of ?1.2 V against SCE. At this potential, the helical regions of single-stranded polynucleotides are also desorbed. Desorption of the disordered regions of single-stranded polynucleotides occurs at more negative potentials. Adsorption and desorption of a small number of bases released from double-helical DNA was evident in the a.c. polarograms only at elevated temperature, or at room temperature after degradation of DNA by sonication.  相似文献   

4.
A quartz crystal microbalance with dissipation (QCM-D) is used to determine the adsorption rate of a supercoiled plasmid DNA onto a quartz surface and the structure of the resulting adsorbed DNA layer. To better understand the DNA adsorption mechanisms and the adsorbed layer physicochemical properties, the QCM-D data are complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The data from simultaneous monitoring of variations in frequency and dissipation energy with the QCM-D suggest that the adsorbed DNA layer is more rigid in the presence of divalent (calcium) cations compared to monovalent (sodium) cations. Adsorption rates are significantly higher in the presence of calcium, attaining a transport-limited rate at about 1 mM Ca2+. Results further suggest that in low ionic strength solutions containing 1 mM Ca2+ and in moderately high ionic strength solutions containing 300 mM NaCl, plasmid DNA adsorption to negatively charged mineral surfaces is irreversible.  相似文献   

5.
The effect of surface properties on the adsorption of bovine gamma-globulin, a model protein for antibody, was studied. Polystyrene latex (PS), hydrophilic copolymer lattices of styrene/2-hydroxyethyl methacrylate [P(S/HEMA)], styrene/ methacrylic acid [P(S/MAA)] and methyl methacrylate/ 2-hydroxyethyl methacrylate [P(MMA/HEMA)], and colloidal silica were used. The adsorption isotherms of gamma-globulin on these colloidal particles were measured as a function of pH and ionic strength. The hydrophilic particles showed low affinities for gamma-globulin at alkaline pH, while PS showed high affinities for gamma-globulin over the whole range of pH and ionic strength. The gamma-globulin adsorption on hydrophilic particles was highly reversible with respect to the pH and ionic strength compared with that on PS. These differences indicate that the dominant driving forces of adsorption are related to the hydrophilicity of particles. The adsorption isotherms of all colloidal particles showed the plateau values, and the order of maximum values of plateau adsorption was P(S/MAA) > PS or P(S/HEMA), silica > P(MMA/HEMA). Thus, they were also affected by the charged groups and the hydrophilicity of the surfaces. On the other hand, the plateau values of all colloidal particles were more or less symmetrical with a maximum at around the isoelectric point of gamma-globulin at an ionic strength of 0.01. This behavior is attributed to the important role of the lateral interaction between the adsorbed molecules at low ionic strength.  相似文献   

6.
J Flemming 《Biopolymers》1973,12(9):1975-1988
The adsorption of deoxyribonucleic acid in the mercury-electrolyte interface was investigated. The effect of this adsorption on the differential capacity of the electrical double layer at the interface between a stationary mercury drop electrode (HMDE) and a buffered aqueous sodium chloride solution was measured. The dependences of this differential capacity on potential, time, and pH was studied in the presence of native and also of denatured DNA. These results were compared with the adsorption of model compounds and with the general theory of the adsorption of polymers. The structure of the adsorbed DNA molecules corresponds to an alternating arrangement of two-dimensional, totally adsorbed sequences and three-dimensional loops extending into the solution. The adsorbed sequences and loops consist of several segments with a specific free-energy change of adsorption. Essentially this energy determines the distribution of the segments between adsorbed sequences and loops. The absolute value of this energy change per segment is fairly large in the case of negatively charged poly-electrolyte DNA at the weakly positively charged interface near the electrocapillary maximum (ECM). The fraction of totally adsorbed segments is relatively large in this potential region. The more negative the potential the lower is the absolute value of free energy change of adsorption per segment. Under the conditions unfavorable for the adsorption, only a few segments can be adsorbed. Most of the segments of the adsorbed DNA molecules extend into the solution and therefore fairly high interface concentrations can be reached. Thus, the arrangement of DNA molecules in the electrode surface is changed when the potential is altered from values near the ECM to more negative ones. This change should produce the wave on the differential capacity curves at a little more negative potential than that of ECM. At a more negative potential, intermolecular interactions between the loops extending into the solution may occur. The adsorption tendency of the resulting associates is higher than that of the isolated molecules. Therefore the isolated molecules desorb at sufficient negatively charged interface producing a round wave while the associates stay adsorbed. At this potential it is impossible for native DNA to generate associates because they are formed from the isolated molecules. This explains the hysteresis loop of the curves of differential capacity vs. potential by using the HMDE. The desorption of the associates is indicated by a sharp wave at much more negative potential. For denatured DNA the associates arise from the very few isolated adsorbed molecules at this potential; therefore, no hysteresis loop occurs. The association constant of denatured DNA must be much higher than that of the native DNA. The reasons for this are discussed.  相似文献   

7.
The aim of the present work is to study the sequential adsorption of F(ab')(2) and bovine serum albumin (BSA) molecules adsorbed onto positively and negatively charged polystyrene latexes. Cationic and anionic latexes were prepared by emulsifier-free emulsion polymerization. Adsorptions of F(ab')(2) on both latexes at a low ionic strength and different pHs were performed. The cationic latex showed a higher adsorption of F (ab')(2) molecules over a range of pH, which could be due to the formation of multilayers. Sequential adsorption of anti-CRP F(ab')(2) and monomeric BSA were performed at two different pre-adsorbed F(ab')(2) amounts on both types of latex. Displacement of F(ab')(2) occurred only when the preadsorbed amounts were larger than a certain critical value, which depends on the adsorption pH. A greater displacement of larger preadsorbed amounts might be the result of a weaker contact between the protein molecules and the polystyrene surface. The displacement of F(ab')(2) previously adsorbed onto both latexes occurred due to pH changes, an increase of ionic strength and the presence of BSA molecules. The effect caused by these three factors was studied independently. The main factors in the desorption of F(ab')(2) on the anionic latex are the changes in pH and ionic strength, whereas on the cationic latex the desorption is mainly caused by the increase of the ionic strength and the presence of BSA. The colloidal stability of the immunotatex was improved by BSA adsorption, especially on cationic latex. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
The binding of pancreatic ribonuclease-A by denatured DNA, native DNA, poly-dA, and poly-dT, has been studied by a gel filtration method. With denatured DNA at pH 7.5, ionic strength 0.053M, there is one binding site per 12 nucleotides and the equilibrium binding constant per site is 9.7 × 104 l./mole. The binding constant increases by a factor of 8 as the pH is decreased from 8 to 7. The strength of the binding of denatured DNA increases with decreasing ionic strength. At pH 7.5, native DNA binds about ? as strongly as does denatured DNA. The binding affinity increases in the order poly-dA, denatured DNA, and poly-dT. These results support the view that the binding of denatured DNA involves both electrostatic interactions between the negatively charged polynucleotide and the positively charged protein, and an interaction of the protein with a pyrimidine residue of the denatured DNA, and thus that the binding is basically similar to that between RNAse and its substrate RNA.  相似文献   

9.
Adsorption of viruses to charge-modified silica.   总被引:4,自引:2,他引:2       下载免费PDF全文
The purpose of this study was to provide a clearer understanding of virus adsorption, focusing specifically on the role of electrostatic interactions between virus particles and adsorbent surfaces. The adsorption of poliovirus 1, reovirus types 1 and 3, and coliphages MS-2 and T2 to colloidal silica synthetically modified to carry either positive or negative surface charge was evaluated. Adsorption experiments were performed by combining virus and silica in 0.1-ionic-strength buffers of pH 4.0, 6.4, and 8.5. Samples agitated for specified adsorption periods were centrifuged to pellet adsorbent particles plus adsorbed virus, and the supernatants were assayed for unadsorbed virus. All viruses adsorbed exclusively to negatively charged silica at pH values below their isoelectric points, i.e., under conditions favoring a positive surface charge on the virions. Conversely, all viruses adsorbed exclusively to positively charged silica at pH values above their isoelectric points, i.e., where virus surface charge is negative. Viruses in near-isoelectric state adsorbed to all types of silica, albeit to a lesser degree.  相似文献   

10.
The purpose of this study was to provide a clearer understanding of virus adsorption, focusing specifically on the role of electrostatic interactions between virus particles and adsorbent surfaces. The adsorption of poliovirus 1, reovirus types 1 and 3, and coliphages MS-2 and T2 to colloidal silica synthetically modified to carry either positive or negative surface charge was evaluated. Adsorption experiments were performed by combining virus and silica in 0.1-ionic-strength buffers of pH 4.0, 6.4, and 8.5. Samples agitated for specified adsorption periods were centrifuged to pellet adsorbent particles plus adsorbed virus, and the supernatants were assayed for unadsorbed virus. All viruses adsorbed exclusively to negatively charged silica at pH values below their isoelectric points, i.e., under conditions favoring a positive surface charge on the virions. Conversely, all viruses adsorbed exclusively to positively charged silica at pH values above their isoelectric points, i.e., where virus surface charge is negative. Viruses in near-isoelectric state adsorbed to all types of silica, albeit to a lesser degree.  相似文献   

11.
The adsorption of a strong, highly charged cationic polyelectrolyte to a kraft lignin thin film was investigated as a function of the adsorbing solution conditions using the quartz crystal microbalance. The polyelectrolyte, PDADMAC, with a molecular weight of 100 kDa and one cationic charge group per monomer, was adsorbed to the anionically charged lignin film in the pH range 3.5-9.5 in electrolyte solution of 0.1 to 100 mM NaCl. At low pH, the adsorbed amount of PDADMAC was minimal, however, this increased as a function of increasing pH. Indeed, the surface excess increased significantly at about pH 8.5, where ionization of the phenolic groups on the lignin macromolecule may be expected. Furthermore, at this elevated pH, the adsorbed amount of PDADMAC decreased as the ionic strength of the solution increased above 1 mM. This is due to the competitive adsorption of counterions to the lignin surface and indicates that the adsorption of PDADMAC to lignin is of a pure electrosorption nature.  相似文献   

12.
The electrophoretic mobility of proteins was successfully determined by means of capillary electrophoresis (CE) with various background electrolytes (BGEs). The objective was focused on the variation in BGE physico-chemical composition and the consequential impact on the observed protein charge. Experimental and calculated mobilities, according to Henry's equation, versus ionic strength have been compared. For positively-charged lysozyme, a good agreement between observed and calculated mobilities was observed using triethanolamine chloride at pH 7.0 as the BGE. Mobility close to zero was shown using borate (pH 8.0) and phosphate (pH 7.0) at a low ionic strength of about 20 mmol l−1, and as a consequence, specific adsorption of oxyanions was evidenced. Lysozyme retention in the case of reversed-phase high-performance liquid chromatography (RP-HPLC) was decreased by the presence of phosphate ions. CE and HPLC are complementary tools for characterizing the behaviour of lysozyme. On the other hand, the mobility of the negatively-charged α-lactalbumin remained constant as regards phosphate at pH 7.0 in the 20–200 mmol l−1 range, contrary to the decrease that had been expected with the increasing ionic strength. β-Lactoglobulin exhibited increasingly lower mobilities than those expected of boric acid/borate at pH 7.0 and 8.0 (I=20 mmol l−1).  相似文献   

13.
1. The electrophoretic mobilities of a mouse lymphoma cell, a Chinese-hamster fibroblast and a somatic-cell hybrid (also fibroblastic), produced by fusion of the hamster cell and a mouse lymphoma cell, were measured at 25 degrees C over a range of pH, concentration of Ca2+ ions and concentration of La3+ ions. 2. All the cells have pI at pH3.5. 3. Ca2+ ions decrease the mobilities and zeta potentials of the cells to zero in the range 1-100mM. 4. La3+ ions lower the mobilities and zeta potentials in the range 10 muM-1 mM, and the cells become positively charged above 1 mM. 5. The data are consistent with specific adsorption of La3+ ions on approx. 2 X 10(14) sites/m2 of cell surface with a free energy of approx. -37kJ/mol. 6. The effects of Ca2+, La3+ and ionic strength on the extent of aggregation of the cells and of neuraminidase-treated cells were studied. 7. Ca2+ ions do not markedly increase aggregation, whereas La3+ ions gave rise to extensive aggregation in the range 10 muM-1 mM, corresponding to the region of La3+ adsorption. 8. Both fibroblastic cell lines are aggregated at high ionic strength. 9. The fibroblastic cells have larger amounts of trypsin-sensitive carbohydrate than does the lymphoma cell; the possible role of this material in cellular aggregation is discussed.  相似文献   

14.
Malate dehydrogenase was adsorbed onto monomolecular lipid films, using a multicompartment trough. The quantity of adsorbed protein and its enzymatic activity were studied with monolayers of various electrical charge densities and subphases of various electrolyte compositions. A closely packed layer of enzyme molecules was adsorbed onto negatively charged films, whereas considerably less protein was adsorbed onto neutral and positively charged monolayers. Electrolytes reduce the quantity of adsorbed protein. The adsorption was found to be irreversible even at high ionic strength. When adsorbed to uncharged lipid films the enzyme is nearly inactive, whereas negatively charged lipid headgroups enhance the specific activity of the enzyme.  相似文献   

15.
Malate dehydrogenase was adsorbed onto monomolecular lipid films, using a multicompartment trough. The quantity of adsorbed protein and its enzymatic activity were studied with monolayers of various electrical charge densities and subphases of various electrolyte compositions. A closely packed layer of enzyme molecules was adsorbed onto negatively charged films, whereas considerably less protein was adsorbed onto neutral and positively charged monolayers. Electrolytes reduce the quantity of adsorbed protein. The adsorption was found to be irreversible even at high ionic strength. When adsorbed to uncharged lipid films the enzyme is nearly inactive, whereas negatively charged lipid headgroups enhance the specific activity of the enzyme.  相似文献   

16.
The dependence of the effective electrophoretic mobility on pH of the background electrolyte was experimentally determined by capillary zone electrophoresis (CZE) for cationic forms of amino acids. The pH of the background electrolytes was in the highly acidic range, 1.6-2.6 pH units, to ensure a high degree of protonation of the amino acids. Poly(vinyl alcohol) was added to the background electrolytes to avoid possible adsorption of the analytes at the inner capillary wall. Non-linear regression of the experimental data was applied to obtain the parameters of the relevant regression functions--the actual mobilities and mixed dissociation constants corresponding to the actual ionic strength. The extended Onsager and Debye-Hückel law was used to calculate the limiting mobilities and thermodynamic dissociation constants. The comparison of the experimental electropherogram with the computer prediction by PeakMaster using the determined data is presented for the selected sample of amino acids.  相似文献   

17.
Mitochondrial ribosomal RNA species from mouse L cells, rat liver, rat hepatoma, hamster BHK-21 cells and human KB cells were examined by electrophoresis on polyacrylamide-agarose gels and sedimentation in sucrose density gradients. The S(E) (electrophoretic mobility) and S values of mitochondrial rRNA of all species were highly dependent on temperature and ionic strength of the medium; the S(E) values increased and the S values decreased with an increase in temperature at a low ionic strength. At an ionic strength of 0.3 at 23-25 degrees C or an ionic strength of 0.01 at 3-4 degrees C the S and S(E) values were almost the same being about 16.2-18.0 and 12.3-13.6 for human and mouse mitochondrial rRNA. The molecular weights under these conditions were calculated to be 3.8x10(5)-4.3x10(5) and 5.9x10(5)-6.8x10(5), depending on the technique used. At 25 degrees C in buffers of low ionic strength mouse mitochondrial rRNA species had a lower electrophoretic mobility than those of human and hamster. Under these conditions the smaller mitochondrial rRNA species of hamster had a lower electrophoretic mobility than that of human but the larger component had an identical mobility. Mouse and rat mitochondrial rRNA species had identical electrophoretic mobilities. Complex differences between human and mouse mitochondrial rRNA species were observed on sedimentation in sucrose density gradients under various conditions of temperature and ionic strength. Mouse L-cell mitochondrial rRNA was eluted after cytoplasmic rRNA on a column of methylated albumin-kieselguhr.  相似文献   

18.
The binding of H1 (and H5) to nucleosome core particles was demonstrated by separating mononucleosomes according to their DNA size on acrylamide gels containing high molarity urea. The presence of urea causes a redistribution of H1 so that it associates with some particles of all linker lengths, including no linker. When the urea is removed the H1 remains associated with particles of all DNA sizes if the different size classes are not mixed with each other. Therefore, urea can effect the transfer of H1 from particles with linker to particles with no linker. When nucleosomes of uniform DNA fragment length, some containing and some lacking H1, are re-electrophoresed under native conditions, they migrate as two widely separated bands. The mobilities of these variants do not depend on linker length and are identical to the mobilities of native H1-containing and H1-lacking particles. When the same collection of particles is electrophoresed in the presence of high molarity urea they migrate with a uniform mobility. These results suggest that H1-containing nucleosomes are conformationally different from H1-lacking particles, but that this difference is eliminated when histone-histone interactions are disrupted by urea.  相似文献   

19.
Buffers of different pH and ionic strength were employed as coating buffers for antigen adsorption to microtitre plates. Their efficiency for coating plates with rinderpest virus (RPV) and foot-and-mouth disease virus (FMDV) antigens was studied by ELISA with polyclonal and monoclonal antibody preparations. While the adsorption and detection of RPV antigen with polyclonal antiserum was highly dependent on the ionic strength and pH of coating buffer, adsorption of antigenically active FMDV antigen was relatively unaffected by the buffering conditions. Both antigens were adsorbed optimally in 0.01 M phosphate buffer, pH 8.0. When monoclonal antibodies were used to detect antigen, there was a greater degree of dependence on the coating buffer than that found with polyclonal antisera. Moreover, when they were used to detect antigen adsorbed under several buffering conditions, monoclonal antibodies showed a variety of preferred buffers. The usefulness of this differential reactivity in distinguishing epitope specificity is demonstrated.  相似文献   

20.
Little is known about the direction and specificity of protein adsorption to solid surfaces, a knowledge that is of great importance in many biotechnological applications. To resolve the direction in which a protein with known structure and surface potentials binds to negatively charged silica nanoparticles, fluorescent probes were attached to different areas on the surface of the protein human carbonic anhydrase II. By this approach it was clearly demonstrated that the adsorption of the native protein is specific to limited regions at the surface of the N-terminal domain of the protein. Furthermore, the adsorption direction is strongly pH-dependent. At pH 6.3, a histidine-rich area around position 10 is the dominating adsorption region. At higher pH values, when the histidines in this area are deprotonated, the protein is also adsorbed by a region close to position 37, which contains several lysines and arginines. Clearly the adsorption is directed by positively charged areas on the protein surface toward the negatively charged silica surface at conditions when specific binding occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号