首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron and confocal microscopy, using immunocytochemical methods, was employed to assess osmotic water permeability of the frog (Rana temporaria) urinary bladder during transcellular water transport, induced by antidiuretic hormone (ADH) or by wash-out of autacoids from serosal, ADH-free Ringer solution. The increase of osmotic water permeability of the urinary bladder was accompanied by relevant ultrastructural changes, the most remarkable being: (1) the appearance of aggregates of intramembranous particles in the apical membrane of granular cells, and the extent of the membrane area covered by the aggregates proportional to that of the water flow; (2) redistribution of actin filaments in the cytoplasm of granular cells; judging from the anti-actin label density, the number of actin filaments in the apical region of cytoplasm was reduced by 2.5–4 times compared with normal; (3) a decrease in the total electron density of the cytoplasm due to the increased water content of granular cells.  相似文献   

2.
Structural changes in organization of the microtubule system in granular cells of frog urinary bladder after water transport induction by vasopressin were studied by methods of electron microscopy and immunocytochemistry. It is shown that in steady-state conditions microtubules form a wide network equally distributed in the whole cytoplasm of granular cells. After vasopressin action, the amount of microtubules increases in the apical region of the cytoplasm. A predominant orientation of microtubules, perpendicular to the apical membrane direction, appears. A structural association of microtubules with specific granules and large vacuoles was observed. A supposition is advanced about association of the described microtubule system reorganization with the activation of vectorial intracellular transport occurring after transepithelial water transport induction.  相似文献   

3.
Structural changes of the cytoplasm of urinary bladder granular cells after an antidiuretic hormone (ADH) stimulation of water transport were studied using standard and cryogenic methods of electron microscopy. Numerous changes occurred in these cells, the cytoplasm of the granular cells becoming swollen, and the intercellular spaces enlarged. Most granules become fused with the apical membrane. Under maximal ADH action, giant vacuoles appear in the cytoplasm of granular cells, in association with microfilaments and microtubules. Analysis of ultrastructure of the granular cells has established the origin of giant vacuoles from the cis -cisterna of the Golgi complex. A hypothesis based on the morphofunctional homology of giant vacuoles in granular cells with the contractile vacuoles of Protozoa is proposed in which the giant vacuoles ('contractile-like' vacuoles) are seen as operating a osmoregulatory role in these cells. It is also proposed that microtubules and microfilaments participate in giant vacuole migration through the cytoplasm.  相似文献   

4.
Summary Quantitative electron microprobe analysis was employed to compare the effects of aldosterone and ADH on the intracellular electrolyte concentrations in the toad urinary bladder epithelium. The measurements were performed on thin freeze-dried cryosections utilizing energy dispersive x-ray microanalysis. After aldosterone, a statistically significant increase in the intracellular Na concentration was detectable in 8 out of 9 experiments. The mean Na concentration of granular cells increased from 8.9±1.3 to 13.2±2.2 mmol/kg wet wt. A significantly larger Na increase was observed after an equivalent stimulation of transepithelial Na transport by ADH. On average, the Na concentration in granular cells increased from 12.0±2.3 to 31.4±9.3 mmol/kg wet wt (5 experiments). We conclude from these results that aldosterone, in addition to its stimulatory effect on the apical Na influx, also exerts a stimulatory effect on the Na pump. Based on a significant reduction in the Cl concentration of granular cells, we discuss the possibility that the stimulation of the pump is mediated by an aldosterone-induced alkalinization.Similar though less pronounced concentration changes were observed in basal cells, suggesting that this cell type also participates in transepithelial Na transport. Measurements in mitochondria-rich cells provided no consistent results.  相似文献   

5.
With an increased influx of Ca2+ in the cytoplasm, the response of cells to ADH in the urinary bladder of the frog was lowered by addition of ionophore A23187 from the side of the basolateral cell membrane, but inhibited when it was added from the apical cell membrane. The removal of calcium by EGTA from the serosal surface was accompanied by a sharp increase of osmotic permeability not only to water, but also to inulin; while when calcium was removed from the mucosal surface of the urinary bladder, osmotic permeability was not changed. After being added to the Ringer solution from the outer surface of the apical cell membrane, the inhibitors of Ca2+ channels (verapamil, Ni2+, Mn2+, Co2+) decreased the effect of ADH. These data indicate that Ca2+ applied onto the outer surface of apical plasma membrane plays an important role in the action of ADH.  相似文献   

6.
Membrane structural studies of the action of vasopressin   总被引:3,自引:0,他引:3  
J B Wade 《Federation proceedings》1985,44(11):2687-2692
Freeze-fracture electron microscopy of the toad urinary bladder indicates that distinctive intramembrane particle aggregates are responsible for the increase in apical membrane water permeability that occurs with vasopressin (VP) stimulation. In unstimulated bladders the aggregates occur in the cytoplasm of the cells in tubular membrane structures now called aggrephores. After stimulation by VP, aggrephores are shuttled to the surface and fuse with the apical membrane. It is suggested by structural observations and by measurements of membrane capacitance that the area of aggregates inserted into the apical membrane is much greater than previously suspected because many aggregates remain in the wall of the fused aggrephores. The area of the aggregates in a stimulated bladder is sufficiently large for these structures to represent an organized array of water channels that mediates the change in apical membrane permeability. Work with antibodies supports the concept that these channels are not always resident in the apical membrane but become inserted only after stimulation by the hormone VP.  相似文献   

7.
Summary Phase and electron micrographs of toad bladders were obtained following dilution of bathing media in the presence and absence of vasopressin. Dilution of the mucosal medium alone resulted in no morphologic changes. Subsequent addition of vasopressin produced an increase in the cell volume of the granular cells, manifested by some or all of the following changes: increased area of granular cell profiles as observed in sections, rounding of the cell nucleus, displacement of the two components of the nuclear envelope, loss of nuclear heterochromatin, sacculation of the endoplasmic reticulum and the Golgi apparatus, and reduction in the electron density of the cell cytoplasm. No such morphologic changes were noted in the other cell types comprising the mucosal epithelium — the mitochondria-rich, the goblet, and the basal cells. On the other hand, dilution of the serosal bathing medium in the absence of vasopressin caused a marked increase in the cell volume of all these cell types. The results demonstrate that the action of vasopressin to enhance bulk water flow across toad bladder is exerted specifically on the apical surface of the granular cells. It is suggested that the hormonal effect on sodium transport may also be limited to the granular cells. The route of osmotic water flow and the possible role of the other mucosal epithelial cells is discussed.  相似文献   

8.
Antidiuretic hormone (ADH) stimulation increases the apical membrane water permeability of granular cells in toad urinary bladder. This response correlates closely with the fusion of tubular cytoplasmic vesicles with the membrane and delivery of intramembrane particle (IMP) aggregates from the tubules (aggrephores) to the apical membrane. These aggregates are believed to be associated with the channels responsible for the water permeability increase. Removal of ADH triggers apical membrane endocytosis and disappearance of aggregates from the apical membrane. However, it has been unclear whether aggregate disappearance is due to disassembly of aggregates within the apical membrane or to their endocytic retrieval as intact structures. Using colloidal gold and horseradish peroxidase to follow endocytosis from the apical surface after ADH removal, we have directly observed in cross-fractured bladder cells the intramembrane structure of intracellular vesicles that contain these fluid-phase markers. Under these conditions, intact aggregates can be identified in the membrane of tubular endocytosed vesicles. This directly demonstrates that conditions which lower apical membrane water permeability cause the tubular aggrephores to "shuttle" intact aggregates from the apical membrane back into the cytoplasm. An additional population of vesicles with tracer are found which are spherical and display structural features of the apical membrane, as well as occasional aggregates. These vesicles may be responsible for retrieval of aggregates from the surface apical membrane.  相似文献   

9.
1. Vasopressin induces a rapid increase in water permeability and stimulates net sodium transport in responsive epithelia through the mediation of cAMP. 2. In amphibian urinary bladder, the increase in water permeability is dependent on an intact cytoskeleton and is associated with the exocytotic insertion of tubular vesicles containing particle aggregates (the putative water channels) into the apical membrane of the granular epithelial cells. 3. In the toad bladder, mucosal addition of NEM, 0.1 mM, elicits a slow and irreversible increase in transepithelial water flow, whilst decreasing net sodium transport. 4. The hydrosmotic response to mucosal NEM is inhibited by cellular acidification, by pretreatment with cytoskeleton-disruptive drugs, and by agents that increase cytosolic calcium. 5. Mucosal NEM potentiates the hydrosmotic response to a submaximal, but not a maximal, dose of vasopressin. 6. Mucosal NEM, like vasopressin, induces both vesicle fusion and the appearance of particle aggregates at the granular cell apical surface. 7. NEM, unlike vasopressin, does not increase cellular cAMP content. 8. Mucosal NEM appears to increase transcellular water flow by activating cellular processes normally triggered by vasopressin, at a step beyond cAMP.  相似文献   

10.
The mucosal cell surface of the toad urinary bladder was examined by scanning electron microscopy, and changes in the structure of the surface of the granular cell were correlated with specific physiological responses to vasopressin. Survey views of the mucosal surface demonstrated that there was no consistent repeating anatomical relationship between the granular cell and the mitochondria-rich cell that would support the concept of cooperativeness in the response to vasopressin. During base-line states of Na+-transport and water flux, the microvilli on the mucosal surface of the granular cell are arranged in a ridge-like network with occasional individual projections. When water flux is increased by exposing the tissue to vasopressin, in the presence of an osmotic gradient across the tissue the microvilli on the granular cell lose the ridge structure and appear, predominantly, as individual projection. Variability-of this appearance points out the necessity of examining large areas and many samples before the significance of any morphological change can be assessed. Blocking the simultaneously occurring natriferic response of the toad urinary bladder with 10(-2)M ouabain does not prevent these changes in the microvilli. When the hydro-osmotic response is blocked by eliminating the osmotic gradient, the granular cell shows no consistent change in mucosal surface morphology even when fixed at the height of the natriferic response. The mitochondria-rich and mucous cells did not show any change in morphology throughout these studies. We conclude that the changes in the mucosal surface morphology of the toad bladder seen after exposure to vasopressin are a result of the increased water flux that occurs when an osmotic gradient exists across the tissue, and are not related to the natriferic response or any specific alteration in the membrane properties.  相似文献   

11.
Cell volume regulation in frog urinary bladder   总被引:5,自引:0,他引:5  
We have studied the problem of cell volume homeostasis in toad and frog urinary bladder by using electrophysiological measurements and an optical measure of cell volume. After osmotically induced swelling, urinary bladder cells spontaneously regulate their volume through a net loss of potassium, chloride, and water. During inhibition of sodium transport by amiloride the cells swell to the same extent as controls, but the volume-regulatory process is blocked. Electrophysiological results under isosmotic conditions indicate that basolateral membrane resistance increases simultaneously with the amiloride-induced rise in apical membrane resistance during transport inhibition. These independent observations indicate that inhibition of apical membrane sodium entry results in a secondary decrease in basolateral membrane potassium permeability. When cells are exposed to calcium-free, hyposmotic Ringer's solution, cell volume regulation is blocked; subsequent addition of the calcium ionophore A23187 is ineffective in restoring the regulatory process. The ionophore does induce volume regulation, however, in amiloride-inhibited, osmotically swollen cells in the presence of external calcium. Calcium thus seems to control basolateral membrane potassium permeability and may be the intracellular mediator of apical and basolateral membrane interactions.  相似文献   

12.
The ultrastructural peculiarities of mitochondria-rich cells of the frog urinary bladder are analysed using three electron microscopic methods: ultrathin sections, scanning electron microscopy, freeze fracture. The mitochondria and tubular and vesicular structures are most abundant in the apical region of cytoplasm. The P-face (PF) of the apical plasma membrane is characterized by the presence of rod-shaped intramembrane particles (IMP), whereas the E-face (EF) possesses complementary pits. Depending on the distribution density of the rod-shaped IMP, three types of cells are described. The apical plasma membrane has an invert distribution of the globular IMP: a great quantity of IMP on the EF and a few particles on the PF. This structure of the apical plasma membrane is supposed to correlate with its very low water permeability. Using filipin as a marker of cholesterol localization, it has been shown that the mitochondria-rich cell apical membrane contains more cholesterol than that of the granular cells. The nature of the rod-shaped IMP and their role in the transmembrane ion transport have been discussed.  相似文献   

13.
Freeze-fracture electron microscopy reveals intramembrane particle arrays in basal membranes of granular epithelial cells as well as both upper and lower plasma membranes of the underlying basal cells in the toad urinary bladder. These particle arrays are morphologically indistinguishable from the luminal membrane aggregates which are known to be associated with antidiuretic hormone (ADH)-stimulated water transport. In both granular and basal cells particle arrays are frequently located in and/or around the openings of vesicular and/or tubular structures fused to the plasma membranes, suggesting that they may be transferred from the cytoplasm by membrane fusion. Quantification of cytoplasmic aggrephores in control granular cells shows that they can be numerous and as close to the basolateral membrane as they are with the luminal membrane, to which they are known to fuse and deliver aggregates upon ADH stimulation. Aggrephore-like tubules were also found in the basal cells. Particle array densities were quantified for 6 pairs of control and ADH-stimulated hemibladders. At least 1440 microns 2 area of plasma membrane for each membrane domain was examined. Results indicate that the presence of these particle arrays in granular and basal cell membranes is highly variable and that exposure to ADH does not cause a statistically significant increase in their frequency.  相似文献   

14.
In the frog Rana temporaria L., oleamide solution (10 μmole/L) applied to the isolated basal surface of the skin augmented the short-circuit current (SCC) from 59.8 ± 2.5 to 78.2 ± 1.4 μA/cm2. When applied to the serous membrane of the urinary bladder, oleamide (1 μmole/L) induced more than a 30-fold increase in osmotic water permeability. The addition of argininevasotocin against the background of oleamide further increased SCC across the skin and osmotic water permeability in the bladder. In Wistar rats, intraperitoneal injection of oleamide (0.1 μmole/L per 100 g of body weight) to non-anesthetized animals after water load reduced diuresis by 22% and increased solute-free water reabsorption and urinary sodium excretion by 31% and 55%, respectively, but did not affect urinary potassium excretion. These findings provide evidence of the similarity between the effects of oleamide and nonapeptide neurohypophyseal hormones on water and ion transport in epithelial cells of osmoregulatory organs in vertebrates.  相似文献   

15.
The urinary bladder of the aquatic toad Xenopus laevis is known to exhibit a low permeability to water and a poor sensitivity to antidiuretic hormone. In order to precise the characteristics and the specific cellular mechanisms of this reduced hydroosmotic response we used a sensitive volumetric technique to monitor net water flow and studied the correlation between the anti-diuretic hormone (ADH)-induced net water flow and the fine ultrastructural appearence of the urinary bladder epithelium. Transmural net water flow was entirely dependent on the osmotic gradient across the preparation and not on the hydrostatic pressure difference. We observed the existence of a low but significant hydro-osmotic response to arginine vasopressin. Freeze-fracture electron microscopy demonstrated the presence of typical aggrephores in the subapical cytoplasm. The response to the hormone was accompanied by the appearance of typical intramembrane aggregates into the apical plasma membrane. Water permeability increase and apical aggregate insertion were both slowly but fully reversible. Except for the multilayered structure of the epithelium and the particularly low response to antidiuretic hormone, all the studied permeability and ultrastructural characteristics of the bladder were thus very similar to those observed in other sensitive epithelia such as the amphibian bladder and skin and the mammalian collecting duct which exhibit a high hydro-osmotic response to the hormone.  相似文献   

16.
Using different electron microscopic techniques, parallel studies of structural alterations in the apical membrane and specific granules of the frog urinary bladder granular cells were made. The results obtained suggest the participation of granule membranes in the formation of highly permeable domains in the apical membranes. After ADH action, the domains with high water permeability are internalized bringing cell membrane retrieval.  相似文献   

17.
Measurements of diffusion permeability and of net transfer of water have been made across the isolated urinary bladder of the toad, Bufo marinus, and the effects thereon of mammalian neurohypophyseal hormone have been examined. In the absence of a transmembrane osmotic gradient, vasopressin increases the unidirectional flux of water from a mean of 340 to a mean of 570 µl per cm2 per hour but the net water movement remains essentially zero. In the presence of an osmotic gradient but without hormone net transfer of water remains very small. On addition of hormone large net fluxes of water occur; the magnitude of which is linearly proportional to the osmotic gradient. The action of the hormone on movement of water is not dependent on the presence of sodium or on active transport of sodium. Comparison of the net transport of water and of unidirectional diffusion permeability of the membrane to water indicates that non-diffusional transport must predominate as the means by which net movement occurs in the presence of an osmotic gradient. An action of the hormone on the mucosal surface of the bladder wall is demonstrated. The effects of the hormone on water movement are most simply explained as an action to increase the permeability and porosity of the mucosal surface of the membrane.  相似文献   

18.
An aquaporin (Hyla AQP-h3BL), consisting of 292 amino acid residues, has been cloned from the urinary bladder of Hyla japonica. In a swelling assay using Xenopus oocytes, AQP-h3BL cRNA-injected oocytes developed a sevenfold and 2.8-fold higher permeability to water and glycerol, respectively, than the water-injected oocytes. This permeability was inhibited by HgCl2. Immunofluorescence revealed that AQP-h3BL is localized in the basolateral plasma membrane of both granular cells in the ventral pelvic and dorsal skins and the secretory cells in the mucous glands. Immunopositive cells were also observed in the basolateral membrane of principal cells in the collecting ducts and in a portion of the late distal tubules in the kidneys, as well as in the principal cells of the urinary bladder. Sequence homology suggests that AQP-h3BL is a homolog to mammalian AQP3. This conclusion is supported by the observed localization of AQP-h3BL to the basolateral membrane in water- and glycerol-permeable epithelial cells. In ventral pelvic skins and urinary bladders, water enters into the cytoplasm through the apical plasma membrane at sites where AQP-h2, sometimes in association with AQP-h3, responds to stimulation by vasotocin; the water exits throughout AQP-h3BL to extracellular spaces. In the mucous glands, on the other hand, water enters throughout this AQP-h3BL and exits through AQP-x5, which is in the apical membrane of secretory cells. Thus, water homeostasis in the frog body is regulated by AQP-h3BL expressed in the basolateral membrane in concert with arginine vasotocin (AVT)-dependent or AVT-independent AQP.  相似文献   

19.
Studies have been made on the isolated urinary bladder of the toad, Bufo marinus, in an attempt to evaluate gradients of chemical activity across the mucosal surfaces of the epithelial cells which would serve to maintain a net movement of sodium from the mucosal medium into the cells. The likelihood of such chemical gradients has been established by the demonstration of lower contents of sodium within the tissue, expressed as microequivalents per gram of tissue water, than of concentrations of sodium in the mucosal medium at all levels of the latter examined. The transepithelial transport of sodium and the sodium content of the tissue were found to increase rapidly with rise in concentration of sodium in the mucosal medium up to values of 30 to 60 meq per liter. Further increase in concentration of the medium above this value failed to induce further stimulation of sodium transport or increase in the sodium content of the tissue. Vasopressin increased the rate of transport of sodium at every concentration of sodium in the mucosal medium without altering this relationship. Although entry of sodium across the mucosal surface of the epithelial cells may be passive it is not by free diffusion but involves some considerable interaction with the mucosal surface of the bladder and constitutes the major determinant of the rate of transepithelial transport of sodium. Vasopressin acts to enhance this initial step in the transport of sodium.  相似文献   

20.
The analysis of ultrastructural characteristics of mitochondria-rich cells of the frog urinary bladder with the aid of three electron microscopic methods (ultrathin sections, scanning electron microscopy, freeze-fracture) has been done. The inverted distribution of globular intramembrane particles (IMP) in apical membranes reflecting their low water permeability has been shown. The typical feature of plasma membranes of mitochondria-rich cells is the presence of rod-shaped IMP on the P-face of the apical membrane and complementary pits on the EF. There is a correlation between the quantity of rod-shaped IMP and the rate of ionic transport. The analysis of cholesterol contents in plasma membranes of epithelial cells of the frog urinary bladder has shown that the apical membranes of mitochondria-rich cells contain more cholesterol than those of granular cells; the great pat of cholesterol is localized in the cytoplasmic leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号