首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean ± standard deviation, 47.53 ± 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean ± standard deviation, 436 ± 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.  相似文献   

2.
Eight pairs of published PCR primers were evaluated for the specific detection of Cryptosporidium parvum and Giardia lamblia in water. Detection sensitivities ranged from 1 to 10 oocysts or cysts for purified preparations and 5 to 50 oocysts or cysts for seeded environmental water samples. Maximum sensitivity was achieved with two successive rounds of amplification and hybridization, with oligonucleotide probes detected by chemiluminescence. Primer annealing temperatures and MgCl2 concentrations were optimized, and the specificities of the primer pairs were determined with closely related species. Some of the primers were species specific, while others were only genus specific. Multiplex PCR for the simultaneous detection of Cryptosporidium and Giardia was demonstrated with primers amplifying 256- and 163-bp products from the 18S rRNA gene of Cryptosporidium and the heat shock protein gene of Giardia, respectively. The results demonstrate the potential utility of PCR for the detection of pathogenic protozoa in water but emphasize the necessity of continued development.  相似文献   

3.
The U.S. Environmental Protection Agency has developed method 1623 for simultaneous detection of Cryptosporidium oocysts and Giardia cysts in water. Method 1623 includes four major steps: filtration, immunomagnetic separation (IMS), fluorescent antibody (FA) staining and microscopic examination. It was noted that the recovery levels following IMS-FA and FA staining were high, averaging more than 92.0% and 89.0% for C. parvum oocysts and G. lamblia cysts, respectively. In contrast, when the filtration step was incorporated, the recovery level of C. parvum oocysts declined significantly to 18.1% in seeded tap water, while a relatively high recovery level of 77.2% for G. lamblia cysts could still be achieved. Further study indicated that the recovery level of C. parvum oocysts could be enhanced significantly when an appropriate amount of silica particles was added to a water sample. The recovery level of C. parvum oocysts was affected by particle size and concentration. The optimal silica particle size was determined to be within the range of 5-40 microm, and the corresponding optimal silica concentration was 1.42 g for 10-l tap water. When both G. lamblia cysts and C. parvum oocysts were spiked into the tap water sample containing the optimum amount of silica particles, the average recovery levels of oocysts and cysts were 82.7% and 75.4%, respectively. The results obtained clearly suggested that addition of an appropriate amount of silica particles could improve the recovery level of C. parvum oocysts significantly and yet there was no noticeable deleterious effect on the recovery level of G. lamblia cysts. Further study indicated that the rotation time in the IMS procedure using the Dynal GC-Combo IMS kit (which was recommended in method 1623) was important for G. lamblia cyst detection. In contrast, the recovery level of C. parvum oocysts was not affected by the rotation time. Furthermore, it was found that the recovery levels of C. parvum oocysts using methods 1622 and 1623 were quite close although different IMS kits were used in the two methods.  相似文献   

4.
Giardiasis and cryptosporidiosis are diseases caused by the protozoan parasites Giardia lamblia and Cryptosporidium parvum. Waterborne transmission of these organisms has become more prevalent in recent years, and regulatory agencies are urging that source and finished water be screened for these organisms. A major problem associated with testing for these organisms is the lack of reliable methodologies and baseline information on the prevalence of these parasites in various water sources. Our study addressed both of these issues. We evaluated the presence and reduction of Giardia cysts and Cryptosporidium oocysts in sewage effluent by a combination of indirect fluorescent antibody (IFA) staining and PCR. Our results indicated a 3-log reduction of Giardia cysts and a 2-log reduction of Cryptosporidium oocysts through the sewage treatment process as determined by IFA. We developed a nested PCR to detect Cryptosporidium oocysts and used a double PCR to detect Giardia cysts. A 100% correlation was noted between IFA and PCR detection of Giardia cysts while correlation for Cryptosporidium oocysts was slightly less. On the basis of these results, PCR may be a useful tool in the environmental analysis of water samples for Giardia and Cryptosporidium organisms.  相似文献   

5.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the beta-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

6.
Cryptosporidium parvum and Giardia lamblia are protozoa capable of causing gastrointestinal diseases. Currently, these organisms are identified using immunofluorescent antibody (IFA)-based microscopy, and identification requires trained individuals for final confirmation. Since artificial neural networks (ANN) can provide an automated means of identification, thereby reducing human errors related to misidentification, ANN were developed to identify Cryptosporidium oocyst and Giardia cyst images. Digitized images of C. parvum oocysts and G. lamblia cysts stained with various commercial IFA reagents were used as positive controls. The images were captured using a color digital camera at 400 x (total magnification), processed, and converted into a binary numerical array. A variety of "negative" images were also captured and processed. The ANN were developed using these images and a rigorous training and testing protocol. The Cryptosporidium oocyst ANN were trained with 1,586 images, while Giardia cyst ANN were trained with 2,431 images. After training, the best-performing ANN were selected based on an initial testing performance against 100 images (50 positive and 50 negative images). The networks were validated against previously "unseen" images of 500 Cryptosporidium oocysts (250 positive, 250 negative) and 282 Giardia cysts (232 positive, 50 negative). The selected ANNs correctly identified 91.8 and 99.6% of the Cryptosporidium oocyst and Giardia cyst images, respectively. These results indicate that ANN technology can be an alternate to having trained personnel for detecting these pathogens and can be a boon to underdeveloped regions of the world where there is a chronic shortage of adequately skilled individuals to detect these pathogens.  相似文献   

7.
This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process.  相似文献   

8.
Very little is known about the ability of the zooplankton grazer Daphnia pulicaria to reduce populations of Giardia lamblia cysts and Cryptosporidium parvum oocysts in surface waters. The potential for D. pulicaria to act as a biological filter of C. parvum and G. lamblia was tested under three grazing pressures (one, two, or four D. pulicaria grazers per 66 ml). (Oo)cysts (1 x 10(4) per 66 ml) were added to each grazing bottle along with the algal food Selenastrum capricornutum (6.6 x 10(4) cells per 66 ml) to stimulate normal grazing. Bottles were rotated (2 rpm) to prevent settling of (oo)cysts and algae for 24 h (a light:dark cycle of 16 h:8 h) at 20 degrees C. The impact of D. pulicaria grazing on (oo)cysts was assessed by (i) (oo)cyst clearance rates, (ii) (oo)cyst viability, (iii) (oo)cyst excystation, and (iv) oocyst infectivity in cell culture. Two D. pulicaria grazers significantly decreased the total number of C. parvum oocysts by 52% and G. lamblia cysts by 44%. Furthermore, two D. pulicaria grazers significantly decreased C. parvum excystation and infectivity by 5% and 87%, respectively. Two D. pulicaria grazers significantly decreased the viability of G. lamblia cysts by 52%, but analysis of G. lamblia excystation was confounded by observed mechanical disruption of the cysts after grazing. No mechanical disruption of the C. parvum oocysts was observed, presumably due to their smaller size. The data provide strong evidence that zooplankton grazers have the potential to substantially decrease the population of infectious C. parvum and G. lamblia in freshwater ecosystems.  相似文献   

9.
Cryptosporidium and Giardia species are enteric protozoa which cause waterborne disease. The detection of these organisms in water relies on the detection of the oocyst and cyst forms or stages. Monoclonal and polyclonal antibodies were compared for their abilities to react with Giardia cysts and Cryptosporidium oocysts after storage in water, 3.7% formaldehyde, and 2.5% potassium dichromate, upon exposure to bleach, and in environmental samples. Three monoclonal antibodies to Cryptosporidium parvum were evaluated. Each test resulted in an equivalent detection of the oocysts after storage, after exposure to bleach, and in environmental samples. Oocyst levels declined slightly after 20 to 22 weeks of storage in water, and oocyst fluorescence and morphology were dull and atypical. Oocyst counts decreased after exposure to 2,500 mg of sodium hypochlorite per liter, and fluorescence and phase-contrast counts were similar. Sediment due to algae and clays found in environmental samples interfered with the detection of oocysts on membrane filters. Two monoclonal antibodies and a polyclonal antibody directed against Giardia lamblia cysts were evaluated. From the same seeded preparations, significantly greater counts were obtained with the polyclonal antibody. Of the two monoclonal antibodies, one resulted in significantly lower cyst counts. In preliminary studies, the differences between antibodies were not apparent when used on the environmental wastewater samples. After 20 to 22 weeks in water, cyst levels declined significantly by 67%. Cysts were not detected with monoclonal antibodies after exposure to approximately 5,000 mg of sodium hypochlorite per liter.  相似文献   

10.
Cryptosporidium and Giardia species are enteric protozoa which cause waterborne disease. The detection of these organisms in water relies on the detection of the oocyst and cyst forms or stages. Monoclonal and polyclonal antibodies were compared for their abilities to react with Giardia cysts and Cryptosporidium oocysts after storage in water, 3.7% formaldehyde, and 2.5% potassium dichromate, upon exposure to bleach, and in environmental samples. Three monoclonal antibodies to Cryptosporidium parvum were evaluated. Each test resulted in an equivalent detection of the oocysts after storage, after exposure to bleach, and in environmental samples. Oocyst levels declined slightly after 20 to 22 weeks of storage in water, and oocyst fluorescence and morphology were dull and atypical. Oocyst counts decreased after exposure to 2,500 mg of sodium hypochlorite per liter, and fluorescence and phase-contrast counts were similar. Sediment due to algae and clays found in environmental samples interfered with the detection of oocysts on membrane filters. Two monoclonal antibodies and a polyclonal antibody directed against Giardia lamblia cysts were evaluated. From the same seeded preparations, significantly greater counts were obtained with the polyclonal antibody. Of the two monoclonal antibodies, one resulted in significantly lower cyst counts. In preliminary studies, the differences between antibodies were not apparent when used on the environmental wastewater samples. After 20 to 22 weeks in water, cyst levels declined significantly by 67%. Cysts were not detected with monoclonal antibodies after exposure to approximately 5,000 mg of sodium hypochlorite per liter.  相似文献   

11.
We evaluated the efficiency of five membrane filters for recovery of Cryptosporidium parvum oocysts and Giardia lamblia cysts. These filters included the Pall Life Sciences Envirochek (EC) standard filtration and Envirochek high-volume (EC-HV) membrane filters, the Millipore flatbed membrane filter, the Sartorius flatbed membrane filter (SMF), and the Filta-Max (FM) depth filter. Distilled and surface water samples were spiked with 10 oocysts and 10 cysts/liter. We also evaluated the recovery efficiency of the EC and EC-HV filters after a 5-s backwash postfiltration. The backwashing was not applied to the other filtration methods because of the design of the filters. Oocysts and cysts were visualized by using a fluorescent monoclonal antibody staining technique. For distilled water, the highest percent recovery for both the oocysts and cysts was obtained with the FM depth filter. However, when a 5-s backwash was applied, the EC-HV membrane filter (EC-HV-R) was superior to other filters for recovery of both oocysts (n = 53 +/- 15.4 per 10 liters) and cysts (n = 59 +/- 11.5 per 10 liters). This was followed by results of the FM depth filter (oocysts, 28.2 +/- 8, P = 0.015; cysts, 49.8 +/- 12.2, P = 0.4260), and SMF (oocysts, 16.2 +/- 2.8, P = 0.0079; cysts, 35.2 +/- 3, P = 0.0079). Similar results were obtained with surface water samples. Giardia cysts were recovered at higher rates than were Cryptosporidium oocysts with all five filters, regardless of backwashing. Although the time differences for completion of filtration process were not significantly different among the procedures, the EC-HV filtration with 5-s backwash was less labor demanding.  相似文献   

12.
We report the detection and identification of Cryptosporidium and Giardia from 1 of 3 species of pinnipeds. Fecal samples were collected from Pacific harbor seal (Phoca vitulina richardsi), northern elephant seal (Mirounga angustirostris), and California sea lion (Zalophus californianus) in the northern California coastal area. By means of fluorescently labeled monoclonal antibodies, Cryptosporidium oocysts were detected in 3 samples from California sea lions, 1 of which also contained Giardia cysts. Oocysts of Cryptosporidium and cysts of Giardia were morphologically indistinguishable from oocysts of C. parvum and cysts of G. duodenalis from other animal origins. Oocysts and cysts were then purified using immunomagnetic separation techniques and identified by polymerase chain reaction (PCR), from which species-specific products were obtained. Sequence analysis revealed that the 452-bp and 358-bp PCR products of Cryptosporidium isolated from California sea lion had identities of 98% with sequences of their template fragments of C. parvum obtained from infected calves. Based on morphological, immunological, and genetic characterization, the isolates were identified as C. parvum and G. duodenalis, respectively. The findings suggested that California sea lions could serve as reservoirs in the environmental transmission of Cryptosporidium and Giardia.  相似文献   

13.
AIMS: The aim of this study was to develop a method based on immunomagnetic capture and polymerase chain reaction (IC-PCR assay) for detection of Cryptosporidium parvum and Giardia intestinalis in sewage sludge. METHODS AND RESULTS: The detection limit of the IC-PCR assay for both organisms was 625 oocysts and cysts ml(-1). By hybridization of PCR products the sensitivity could be increased to 125 oocysts and cysts ml(-1). Forty-four sludge samples from 12 wastewater treatment plants were examined. The samples positive for Giardia (9 out of 44) were from eight wastewater plants and the C. parvum genotype 2 samples (3 out of 44) originated from different sewage works. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: IC-PCR offers the possibility to distinguish between Cryptosporidium and Giardia genotypes. This assay can be used to monitor the presence of these organisms in a community and to determine contamination of sludge used as soil amendment.  相似文献   

14.
AIM: To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. METHODS AND RESULTS: Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests were carried out using CD-1 suckling mice in the Cryptosporidium experiments and newly weaned CD-1 mice in the Giardia experiments. Exposure times of > or =10 h (total optical dose c. 30 kJ) rendered C. parvum oocysts noninfective. Giardia muris cysts were rendered completely noninfective within 4 h (total optical dose >12 kJ). Scanning electron microscopy and viability (4',6-diamidino-2-phenylindole/propidium iodide fluorogenic dyes and excystation) studies on oocysts of C. parvum suggest that inactivation is caused by damage to the oocyst wall. CONCLUSIONS: Results show that cysts of G. muris and oocysts of C. parvum are rendered completely noninfective after batch SODIS exposures of 4 and 10 h (respectively) and is also likely to be effective against waterborne cysts of Giardia lamblia. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate that SODIS is an appropriate household water treatment technology for use as an emergency intervention in aftermath of natural or man-made disasters against not only bacterial but also protozoan pathogens.  相似文献   

15.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% +/- 11.8%, while the mean cyst recovery was 57.1% +/- 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% +/- 16.3% for oocysts and 49.4% +/- 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% +/- 13.8%, while the mean cyst recovery percentages was 41.2% +/- 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% +/- 11.1% and 61.3% +/- 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

16.
Methods for the simultaneous detection of Cryptosporidium parvum oocysts and Giardia cysts from water are described and their relative recovery efficiencies are assessed for seeded samples of both tap and river water. Cartridge filtration, membrane filtration, and calcium carbonate flocculation were evaluated, and steps to optimize the concentration procedures were undertaken. Increasing centrifugation to 5,000 x g, coupled with staining in suspension, was found to increase the overall efficiency of recovery of both cysts and oocysts. Cartridge filtration for both cysts and oocysts was examined by use of 100-liter volumes of both tap and river water. Improvements in recovery were observed for Cryptosporidium oocysts after extra washes of the filters. Calcium carbonate flocculation gave the maximum recovery for both Cryptosporidium oocysts and Giardia cysts and for both water types. A variety of 142-mm membranes was examined by use of 10-liter seeded samples of tap and river water. Cellulose acetate with a 1.2-micron pore size provided the best results for Cryptosporidium oocysts, and cellulose nitrate with a 3.0-micron pore size did so for Giardia cysts.  相似文献   

17.
This study was carried out to estimate the prevalence and potential for human infectivity of Giardia cysts in Canadian drinking water supplies. The presence of Cryptosporidium oocysts was also noted, but isolates were not collected for further study. A total of 1,760 raw water samples, treated water samples, and raw sewage samples were collected from 72 municipalities across Canada for analysis, 58 of which treat their water by chlorination alone. Giardia cysts were found in 73% of raw sewage samples, 21% of raw water samples, and 18.2% of treated water samples. There was a trend to higher concentration and more frequent incidence of Giardia cysts in the spring and fall, but positive samples were found in all seasons. Cryptosporidium oocysts were found in 6.1% of raw sewage samples, 4.5% of raw water samples, and 3.5% of treated water samples. Giardia cyst viability was assessed by infecting Mongolian gerbils (Meriones unguiculatus) and by use of a modified propidium iodide dye exclusion test, and the results were not always in agreement. No Cryptosporidium isolates were recovered from gerbils, but 8 of 276 (3%) water samples and 19 of 113 (17%) sewage samples resulted in positive Giardia infections. Most of the water samples contained a low number of cysts, and 12 Giardia isolates were successfully recovered from gerbils and cultured. Biotyping of these isolates by isoenzyme analysis and karyotyping by pulsed-field gel electrophoresis separated the isolates into the same three discrete groups. Karyotyping revealed four or five chromosomal bands ranging in size from 0.9 to 2 Mb, and four of the isolates had the same banding pattern as that of the WB strain. Analysis of the nucleotide sequences of the 16S DNA coding for rRNA divided the isolates into two distinct groups corresponding to the Polish and Belgian designations found by other investigators. The occurrence of these biotypes and karyotypes appeared to be random and was not related to geographic or other factors (e.g., different types were found in both drinking water and sewage from the same community). Biotyping and karyotyping showed that isolates from this study were genetically and biochemically similar to those found elsewhere, including well-described human source strains such as WB. We conclude that potentially human-infective Giardia cysts are commonly found in raw surface waters and sewage in Canada, although cyst viability is frequently low. Cryptosporidium oocysts are less common in Canada. An action level of three to five Giardia cysts per 100 liters in treated drinking water is proposed on the basis of the monitoring data from outbreak situations. This action level is lower than that proposed by Haas and Rose (C. N. Haas and J. B. Rose, J. Am. Water Works Assoc. 87(9):81-84, 1995) for Cryptosporidium spp. (10 to 30 oocysts per 100 liters).  相似文献   

18.
A new method for the isolation of Cryptosporidium parvum oocysts and Giardia lamblia cysts from biosolid samples has been developed that utilizes sedimentation and immunomagnetic separation. The method was used to recover stained cysts and oocysts (spike organisms) from primary settled sewage sludge, anaerobically digested sewage sludge, and bovine manure. Recovery efficiencies associated with this method were approximately 40 to 60% and were significantly greater than those associated with similar methods based on sucrose flotation (P < 0.001). The recovery efficiency of the sedimentation-based method showed no significant reduction as a result of sample storage for up to 21 days (P > 0.05). Recovery efficiencies were determined by spiking samples with prestained cysts and oocysts, allowing them to be differentiated from those naturally present in the biosolid samples. The prestained cysts and oocysts had been fixed in 5% formalin, and the recovery efficiencies associated with this method may be different from recovery efficiencies for fresh cysts or oocysts.  相似文献   

19.
Giardia and Cryptosporidium spp. are important enteric protozoan pathogens for humans and animals, and have been found to contaminate water as well as edible shellfish all over the world. This is the first study to simultaneously investigate the presence of Giardia and Cryptosporidium in inflowing water and harvested shellfish in a geographically closed environment (Varano Lagoon, Southern Italy). Samples of treated wastewater were collected each month - at the outlet from the treatment plant, and downstream at the inlet into the lagoon - from the channels flowing into the Lagoon, together with specimens of Ruditapes decussatus and Mytilus galloprovincialis from shellfish-farms on the same lagoon. Giardia cysts were found by immunofluorescence (IF) microscopy in 16 out of 21 samples of treated wastewater and in 7 out of 21 samples from downstream water channels, and viable cysts were also detected by a beta-giardin RT-PCR. G. duodenalis Assemblages A and B were identified by small ribosomal subunit (18S-rDNA) and triosephosphate isomerase (tpi)-PCR, followed by sequencing. Cryptosporidium oocysts were found by IF in 5 out of 21 wastewater samples, and in 8 out of 21 samples from water channels. Molecular analysis identified the zoonotic species Cryptosporidium parvum by oocyst wall protein (COWP)-PCR and sequencing. Higher concentrations of Giardia cysts than Cryptosporidium oocysts were registered in almost all wastewater and water samples. IF and molecular testing of shellfish gave negative results for both protozoa. Wastewaters carrying Giardia and Cryptosporidium (oo)cysts are discharged into the Lagoon; however, the shellfish harvested in the same environment were found to be unaffected, thus suggesting that physical, ecological and climatic conditions may prevent contamination of harvested shellfish.  相似文献   

20.
Real-time PCR for the detection of Cryptosporidium parvum.   总被引:9,自引:0,他引:9  
Real time, TaqMan PCR assays were developed for the Cp11 and 18S rRNA genes of the protozoan parasite Cryptosporidium parvum. The TaqMan probes were specific for the genus Cryptosporidium, but could not hybridize exclusively with human-infectious C. parvum species and genotypes. In conjunction with development of the TaqMan assays, two commercial kits, the Mo Bio UltraClean Soil DNA kit, and the Qiagen QIAamp DNA Stool kit, were evaluated for DNA extraction from calf diarrhea and manure, and potassium dichromate and formalin preserved human feces. Real-time quantitation was achieved with the diarrhea samples, but nested PCR was necessary to detect C. parvum DNA in manure and human feces. Ileal tissues were obtained from calves at 3, 7, and 14 days post-infection, and DNA extracted and assayed. Nested PCR detected C. parvum DNA in the 7-day post-infection sample, but neither of the other time point samples were positive. These results indicate that real-time quantitation of C. parvum DNA, extracted using the commercial kits, is feasible on diarrheic feces, with large numbers of oocysts and small concentrations of PCR inhibitor(s). For samples with few oocysts and high concentrations of PCR inhibitor(s), such as manure, nested PCR is necessary for detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号