首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shih Ih  Been MD 《The EMBO journal》2001,20(17):4884-4891
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.  相似文献   

2.
The natural substrate cleaved by the hepatitis delta virus (HDV) ribozyme contains a 3',5'-phosphodiester linkage at the cleavage site; however, a 2',5'-linked ribose-phosphate backbone can also be cleaved by both trans-acting and self-cleaving forms of the HDV ribozyme. With substrates containing either linkage, the HDV ribozyme generated 2',3'-cyclic phosphate and 5'-hydroxyl groups suggesting that the mechanisms of cleavage in both cases were by a nucleophilic attack on the phosphorus center by the adjacent hydroxyl group. Divalent metal ion was required for cleavage of either linkage. However, although the 3',5'-linkage was cleaved slightly faster in Ca2+ than in Mg2+, the 2',5'-linkage was cleaved in Mg2+ (or Mn2+) but not Ca2+. This dramatic difference in metal-ion specificity is strongly suggestive of a crucial metal-ion interaction at the active site. In contrast to the HDV ribozymes, cleavage at a 2',5'-phosphodiester bond was not efficiently catalyzed by the hammerhead ribozyme. The relaxed linkage specificity of the HDV ribozymes may be due in part to lack of a rigid binding site for sequences 5' to the cleavage site.  相似文献   

3.
4.
We previously constructed a multiribozyme expression vector by combining cis- and trans-acting ribozymes and we showed that several ribozymes, each directed against a different target in the HIV genome and acting independently in a 'shotgun' manner, markedly increased the efficiency of cleavage of HIV RNA in vitro [Ohkawa et al., Proc. Natl Acad. Sci. USA 90, 11302 (1993)]. However, the cis-acting ribozymes that had trimmed the 5' and 3' ends of each trans-acting ribozyme were designed merely to await for degradation by RNases when they were used in vivo. Since several trans-activator proteins are essential for viral replication of HIV-1, we wondered whether a decoy function could be coupled with the cleavage activity of ribozymes. We therefore introduced the TAR or the RRE sequence into the stem II region of each cis-acting ribozyme. When the activity of each resulting cis-acting ribozyme that had been endowed with the decoy function was examined in vitro, it was found to retain almost full trimming activity. Moreover, cis-acting ribozymes with either the TAR or the RRE sequence were shown to be able to trap Tat or Rev protein successfully. It is, therefore, possible to endow the stem II region with a specific protein-binding function without the loss of ribozyme function. Thus, cis-acting ribozymes, endowed with the decoy function, can first trim the 5' and 3' ends of each trans-acting ribozyme and are then still available for trapping trans-activator proteins possibly prior to their degradation by RNases when they are to be used in vivo. Furthermore, it is also expected that the reduction in production of HIV RNA that is achieved by sequestering the trans-activator proteins might provide the trans-acting ribozymes, targeted to HIV RNA, with a better chance of eliminating the remaining HIV RNA.  相似文献   

5.
The HDV ribozyme is an RNA enzyme from the human pathogenic hepatitis delta virus (HDV) that has recently also been identified in the human genome. It folds into a compact, nested double-pseudoknot. We examined here the functional relevance of the capping loop L4 and the helical crossover J1/2, which tightly interlace the two helical stacks of the ribozyme. Peripheral structural elements such as these are present in cis-acting, but not trans-acting ribozymes, which may explain the order-of-magnitude decrease in cleavage activity observed in trans-acting ribozymes with promise in gene therapy applications. Comparison of a systematic set of cis- and trans-acting HDV ribozymes shows that the absence of either L4 or J1/2 significantly and independently impacts catalytic activity. Using terbium(III) footprinting and affinity studies, as well as distance measurements based on time-resolved fluorescence resonance energy transfer, we find that J1/2 is most important for conferring structural properties similar to those of the cis-acting ribozyme. Our results are consistent with a model in which removal of either a helical crossover or surprisingly a capping loop induces greater dynamics and expansion of the catalytic core at long range, impacting local and global folding, as well as catalytic function.  相似文献   

6.
Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.  相似文献   

7.
Analysis of the self-cleavage of ribozymes derived from the genomic RNA of Hepatitis delta virus (HDV) has revealed that certain co-transcribed vector sequences significantly affect the activity of the ribozyme. Specifically, the t1/2 of self-cleavage for a 135 nucleotide HDV RNA varied, at 42 degrees C, from 5 min to 88 min, depending on the vector-derived sequences flanking the 5' end of the ribozyme. Further analysis suggested that this phenomenon was most likely due to the interaction of vector-derived sequences with a 16 nucleotide region found at the 3' end of the ribozyme. These findings have implications for studies of ribozymes transcribed from cDNA templates, and may provide information regarding the catalytic structure of the HDV ribozyme.  相似文献   

8.
The hepatitis delta virus (HDV), an infectious human pathogen affecting millions of people worldwide, leads to intensified disease symptoms, including progression to liver cirrhosis upon coinfection with its helper virus, HBV. Both the circular RNA genome of HDV and its complementary antigenome contain a common cis-cleaving catalytic RNA motif, the HDV ribozyme, which plays a crucial role in viral replication. Previously, the crystal structure of the product form of the cis-acting genomic HDV ribozyme has been determined, and the precursor form has been suggested to be structurally similar. In contrast, solution studies by fluorescence resonance energy transfer (FRET) on a trans-cleaving form of the ribozyme have shown significant global conformational changes upon catalysis, while 2-aminopurine (AP) fluorescence assays have detected concomitant local conformational changes in the catalytic core. Here, we augment these studies by using terbium(III) to probe the structure of the trans-acting HDV ribozyme at nucleotide resolution. We observe significant structural differences between the precursor and product forms, especially in the P1.1 helix and the trefoil turn in the single-stranded region connecting P4 and P2 (termed J4/2) of the catalytic core. We show, using terbium(III) footprinting and sensitized luminescence spectroscopy as well as steady-state, time-resolved, and gel-mobility FRET assays on a systematic set of substrates, that the substrate sequence immediately 5' to the cleavage site significantly modulates these local as well as resultant global structural differences. Our results suggest a structural basis for the previously observed impact of the 5' substrate sequence on catalytic activity.  相似文献   

9.
The crystal structure of a genomic hepatitis delta virus (HDV) ribozyme 3' cleavage product predicts the existence of a 2 bp duplex, P1.1, that had not been previously identified in the HDV ribozymes. P1.1 consists of two canonical C-G base pairs stacked beneath the G.U wobble pair at the cleavage site and would appear to pull together critical structural elements of the ribozyme. P1.1 is the second stem of a second pseudoknot in the ribozyme, making the overall fold of the ribozyme a nested double pseudoknot. Sequence comparison suggests the potential for P1.1 and a similar fold in the antigenomic ribozyme. In this study, the base pairing requirements of P1.1 for cleavage activity were tested in both the genomic and antigenomic HDV ribozymes by mutagenesis. In both sequences, cleavage activity was severely reduced when mismatches were introduced into P1.1, but restored when alternative base pairing combinations were incorporated. Thus, P1.1 is an essential structural element required for cleavage of both the genomic and antigenomic HDV ribozymes and the model for the antigenomic ribozyme secondary structure should also be modified to include P1.1.  相似文献   

10.
A series of permuted variants of antigenomic HDV ribozyme and trans-acting variants were constructed. The catalytic activity study of the ribozymes has shown that all the variants were capable of self-cleaving with equally biphasic kinetics. Ribonuclease and Fe(II)-EDTA cleavage have provided evidence that all designed ribozymes fold according to the pseudoknot model and the conformations of the initial and cleaved ribozyme are different. A scheme of HDV ribozyme self-cleavage reaction was suggested. The role of hydrogen bonds in the reaction was evaluated by substitution of ribose in the ribozyme for deoxyribose. It was found that the 2'-OH group of U23 and C27 is critical for the reaction to occur; the 2'-OH group of U32 and U39 is important, while 2'-OH groups of other nucleotides of loop 3, stem 4 and stem 1 are unimportant for the cleavage activity.  相似文献   

11.
Gondert ME  Tinsley RA  Rueda D  Walter NG 《Biochemistry》2006,45(24):7563-7573
The human pathogenic hepatitis delta virus (HDV) employs a unique self-cleaving catalytic RNA motif, the HDV ribozyme, during double-rolling circle replication. Fluorescence spectroscopy, circular dichroism, terbium(III) footprinting, and X-ray crystallography of precursor and product forms have revealed that a conformational change accompanies catalysis. In addition, fluorescence resonance energy transfer (FRET) has previously been used on a trans-acting HDV ribozyme to demonstrate surprisingly significant catalytic and global conformational effects of substrate analogues with varying 5' sequences, which reside as dangling overhangs outside the catalytic core. Here, we use the fluorescent guanine analogue 2-aminopurine (AP) in nucleotide position 76, immediately downstream of the catalytically involved C75, to monitor the relative structural effects of these substrate analogues on the ribozyme's trefoil turn of the catalytic core. Steady-state and time-resolved AP fluorescence spectroscopies show that the binding of each substrate analogue induces a unique local conformation with a specific AP76 stacking equilibrium. Binding of the 3' product results in a relative increase in AP fluorescence, suggesting that AP76 becomes more unstacked upon catalysis. These local conformational changes are kinetically concomitant with global conformational changes monitored by FRET. Finally, the rate constant of the local conformational change upon 3' product binding is fast and independent of 3' product concentration yet Mg2+ dependent. Our results demonstrate that the trefoil turn of the HDV ribozyme catalytic core is in a state of dynamic equilibrium not captured by static crystal structures and is highly sensitive to the identity of the 5' sequence and Mg2+ ions.  相似文献   

12.
Human hepatitis delta (HDV) ribozyme is one of small ribozymes, such as hammerhead and hairpin ribozymes, etc. Its secondary structure shows pseudoknot structure composed of four stems (I to IV) and three single-stranded regions (SSrA, -B and -C). The 3D structure of 3'-cleaved product of genomic HDV ribozyme provided extensive information about tertiary hydrogen bonding interactions between nucleotide bases, phosphate oxygens and 2'OHs including new stem structure P1.1. To analyze the role of these hydrogen bond networks in the catalytic reaction, site-specific atomic-level modifications (such as deoxynucleotides, deoxyribosyl-2-aminopurine, deoxyribosylpurine, 7-deaza-ribonucleotide and inosine) were incorporated in the smallest trans-acting HDV ribozyme (47-mer). Kinetic analysis of these ribozyme variants demonstrated the importance of the two W-C base pairs of P1.1 for cleavage; in addition, the results suggest that all hydrogen bond interactions detected in the crystal structure involving 2'-OH and N7 atoms are present in the active ribozyme structure. In most of the variants, the relative reduction in kobs caused by substitution of the 2'-OH group correlated with the number of hydrogen bonds affected by the substitution. However G74 and C75 may have more than one hydrogen bond involving the 2'-OH in both the trans- and cis-acting HDV ribozyme. Moreover, in variants in which N7 was deleted, kobs was reduced 5- to 15-fold, it may suggest that N7 assists in coordinating Mg2+ ions or water molecules which bind with weak affinity in the active structure.  相似文献   

13.
14.
Ribozymes are RNA molecules with enzymatic activity that can cleave target RNA molecules in a sequence specific manner. To date, various types of ribozyme have been constructed to cleave other RNAs and such trans-acting ribozymes include hammerhead, hairpin and HDV ribozymes. External guide sequence (EGS) can also induce the suppression of a gene-expression by taking advantage of cellular RNase P. Here we compared the activities of various functional RNA cleavers both in vitro and in vivo. The first purpose of this comparison was intended to determine the best ribozyme motif with the highest activity in cells. The second purpose is to know the correlation between the activities of ribozymes in vitro and in vivo. Our results indicated that the intrinsic cleavage activity of ribozymes is not the sole determinant that is responsible for the activity of a ribozyme in cultured cells.  相似文献   

15.
16.
The ribozymes derived from Hepatitis delta virus (HDV) RNA appear unique in their sequence requirements for self-cleavage. While truncating the 1679 nucleotide antigenomic HDV RNA, we have characterized the cleavage requirements of a number of ribozymes of intermediate length. Two of these, containing 186 and 106 HDV nucleotides respectively, cleaved to completion in the presence of 18 M formamide. The 186 nucleotide ribozyme also cleaved to completion in 10 M urea. Removal of an additional 10 nts from the 3' terminus of the 106 nt ribozyme resulted in a loss of the ability to cleave in high concentrations of the denaturants. The interaction of nucleotides near the cleavage site with a sequence within this 10 base region may confer unusual stability on these ribozymes.  相似文献   

17.
Tinsley RA  Harris DA  Walter NG 《Biochemistry》2004,43(28):8935-8945
The ability of divalent metal ions to participate in both structure formation and catalytic chemistry of RNA enzymes (ribozymes) has made it difficult to separate their cause and effect in ribozyme function. For example, the recently solved crystal structures of precursor and product forms of the cis-cleaving genomic hepatitis delta virus (HDV) ribozyme show a divalent metal ion bound in the active site that is released upon catalysis due to an RNA conformational change. This conformational switch is associated with a repositioning of the catalytically involved base C75 in the active-site cleft, thus controlling catalysis. These findings confirm previous data from fluorescence resonance energy transfer (FRET) on a trans-acting form of the HDV ribozyme that found a global conformational change to accompany catalysis. Here, we further test the conformational switch model by measuring the Mg(2+) dependence of the global conformational change of the trans-acting HDV ribozyme, using circular dichroism and time-resolved FRET as complementary probes of secondary and tertiary structure formation, respectively. We observe significant differences in both structure and Mg(2+) affinity of the precursor and product forms, in the presence and absence of 300 mM Na(+) background. The precursor shortens while the product extends with increasing Mg(2+) concentration, essentially amplifying the structural differences observed in the crystal structures. In addition, the precursor has an approximately 2-fold and approximately 13-fold lower Mg(2+) affinity than the product in secondary and tertiary structure formation, respectively. We also have compared the C75 wild-type with the catalytically inactive C75U mutant and find significant differences in global structure and Mg(2+) affinity for both their precursor and product forms. Significantly, the Mg(2+) affinity of the C75 wild-type is 1.7-2.1-fold lower than that of the C75U mutant, in accord with the notion that C75 is essential for a catalytic conformational change that leads to a decrease in the local divalent metal ion affinity and release of a catalytic metal. Thus, a consistent picture emerges in which divalent metal ions and RNA functional groups are intimately intertwined in affecting structural dynamics and catalysis in the HDV ribozyme.  相似文献   

18.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

19.
The HDV ribozyme's folding pathway is, by far, the most complex folding pathway elucidated to date for a small ribozyme. It includes 6 different steps that have been shown to occur before the chemical cleavage. It is likely that other steps remain to be discovered. One of the most critical of these unknown steps is the formation of the trans Watson-Crick GU base pair within loop III. The U(23) and G(28) nucleotides that form this base pair are perfectly conserved in all natural variants of the HDV ribozyme, and therefore are considered as being part of the signature of HDV-like ribozymes. Both the formation and the transformation of this base pair have been studied mainly by crystal structure and by molecular dynamic simulations. In order to obtain physical support for the formation of this base pair in solution, a set of experiments, including direct mutagenesis, the site-specific substitution of chemical groups, kinetic studies, chemical probing and magnesium-induced cleavage, were performed with the specific goal of characterizing this trans Watson-Crick GU base pair in an antigenomic HDV ribozyme. Both U(23) and G(28) can be substituted for nucleotides that likely preserve some of the H-bond interactions present before and after the cleavage step. The formation of the more stable trans Watson-Crick base pair is shown to be a post-cleavage event, while a possibly weaker trans Watson-Crick/Hoogsteen interaction seems to form before the cleavage step. The formation of this unusually stable post-cleavage base pair may act as a driving force on the chemical cleavage by favouring the formation of a more stable ground state of the product-ribozyme complex. To our knowledge, this represents the first demonstration of a potential stabilising role of a post-cleavage conformational switch event in a ribozyme-catalyzed reaction.  相似文献   

20.
Human hepatitis delta virus (HDV) ribozyme can catalyze self-cleavage reaction in the presence of Mg2+ ions, yielding products with 2',3'-cyclic phosphate and 5'-OH termini as do hammerhead and hairpin ribozymes. Recently, the tertiary structure of 3'-cleaved product of genomic HDV ribozyme was solved by X-ray crystallographic analysis. In this structure three single-stranded regions (SSrA, -B and -C) interacts intricately with hydrogen bonds between bases, phosphate oxygens and 2'-OHs to form nested double pseudoknot structure. Especially two Watson-Crick base pairs, 726G-710C and 727G-709C, between SSrA and SSrC, seems to be important for compact folding. To characterize the necessity of the two base pairs, we performed in vitro selection of active ribozymes using random RNA pool which mutated at 709, 710, 726 and 727. The result indicates that basically one G-C base pair is necessary for the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号