首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
ABSTRACT.   Past studies of offspring sex ratios in birds have often relied on sexually size dimorphic species where nestling sex could be determined based on weight at a given age. DNA-based sexing techniques allow us to assess the accuracy of those techniques and to refine them for use when costs or convenience make DNA methods impractical. Using nestling Red-winged Blackbirds ( Agelaius phoeniceus ) whose sex was determined using DNA, we compared sex ratios obtained using different morphological criteria. Conservative criteria from previous studies were completely accurate, but allowed sexing of few nestlings younger than 8 d old, and were more successful for sexing males than females. A new method was developed that allowed accurate sexing of nestlings beginning at day 6 posthatching and was less biased relative to known sex ratios. Using 11 years of data, the conservative method left an average of 55% of nestlings and 36% of fledglings unsexed, compared to 31% and 9% using the new method. Furthermore, the male bias in sex ratio estimates using the conservative method was greater, both absolutely and relative to estimates based on the new method, when the proportion of unsexed nestlings (because they were not weighed when older) was higher. Thus, estimates of population sex ratios will be more accurate as the number of nestlings measured on day 8 or older increases. However, if some nestlings that were not weighed past day 7 fledge, the new method allows more of those individuals to be sexed than the conservative method, and the population sex ratio estimate should be more reliable. Although our approach should apply to other sexually dimorphic species, the criteria used must be developed based on such species-specific attributes as growth patterns and degree of hatching asynchrony.  相似文献   

2.
Sex identification is a problem in research and conservation. It can often be solved using a DNA test but this is only an option if a sex-specific marker is available. Such markers can be identified using the amplified fragment length polymorphism (AFLP) technique. This is usually a taxonomic method, as it produces a DNA fingerprint of 50-100 PCR bands. However, if male and female AFLP products are compared, sex-specific markers are confined to the heterogametic sex and can rapidly be identified. Once a marker is found, AFLP can be used to sex organisms directly or the marker can be sequenced and a standard PCR test designed.  相似文献   

3.
An accurate, sensitive, and quick (approximately 3 h) method for determining the sex of ovine embryos was developed using polymerase chain reaction (PCR) primers derived from an ovine-specific Y-chromosome random amplified polymorphic DNA marker ( UcdO43 ). The accuracy and sensitivity of the assay were first tested using genomic DNA from 10 males and 10 females of five different sheep breeds, and then tested using serial dilutions of male-in-female DNA. The assay was 100% accurate in confirming the sex of the individuals and the ovine male-specific fragment was detected in dilutions containing as little as 10 pg of male DNA in 50 ng of female DNA. The assay was also confirmed to be specific for the ovine Y-chromosome as bovine, caprine, porcine, murine, and human DNA did not amplify. The ovine embryo sexing method is a duplex PCR system that also includes ZFY/ZFX primers. ZFY/ZFX provide an internal positive control for amplification as well as a means to confirm the results obtained with the UcdO43 primers. All embryo sexing results (36/36) from our method were in agreement with the ZFY/ZFX assay results. However, while our method requires an internal control to detect PCR failure, it has the advantages of not requiring nested PCR or restriction endonuclease digestion of the PCR product, and concerns about cross-species contamination are eliminated.  相似文献   

4.
Park JY  Lee JH  Choi SA  Kim KJ  Lee IB  Kim MK 《Zoological science》2011,28(10):740-742
The aim of this study was to develop a rapid, simple, sensitive, and accurate duplex polymerase chain reaction (PCR) to sex Nipponia nippon, a monomorphic bird. Amplification by duplex PCR of a sex-related gene on the female chromosome and the 12S rRNA gene yielded good results using genomic DNA extracted from a feather follicle or the membranes of eggshell samples. To simplify the DNA extraction procedure, a simple boiling method was used. Our simple boiling DNA extraction method produced similar PCR amplification results as when using DNA extracted using TRIzol. Sex determination in the endangered Nipponia nippon is of crucial value to breeding programs. The duplex PCR protocol that we developed provides a simple sex identification method that is based on amplification of a sex-related gene, and we anticipate that it will facilitate effective conservation and management of Nipponia nippon.  相似文献   

5.
DNA analysis by flow cytometry   总被引:2,自引:0,他引:2  
Accurate quantification of DNA from cells of several species is possible with flow cytometry. When one species is used as a reference, cytometric readings from two or more different species can be compared to obtain relative percent DNA or DNA indices. Differences in DNA from the male and female of the same species also can be measured. The method allows rapid screening of chromosomal abnormalities among large clinical populations, and evaluation of errors of sex determination such as XY sex reversal.  相似文献   

6.
A rapid protocol for sexing chick embryos (Gallus g. domesticus)   总被引:3,自引:0,他引:3  
M. Clinton 《Animal genetics》1994,25(5):361-362
A method for establishing the sex of chick embryos before the appearance or morphological differences between males and females has been developed. DNA was isolated from 5–7-day-old embryos by proteinase K digestion and subjected to polymerase chain reaction (PCR) amplification with W-chromosome specific primers. Sexing can be achieved within 1 day using as little as 1 ng template DNA.  相似文献   

7.
Summary Prenatal diagnosis by chorion biopsy in the first trimester of pregnancy has advantages over second trimester amniocentesis because diagnosis can be achieved at 9–12 weeks gestation, reducing prenatal anxiety and avoiding the trauma of late abortion. DNA can be prepared from chorionic villus biopsies in sufficient quantity and purity for use in prenatal diagnosis systems using specific DNA probes hybridised to restriction endonuclease digests.DNA probes derived from the Y chromosome have been used to determine fetal sex. The use of such probes means that the chromosomal sex of the fetus can be identified more quickly than by chromosome preparation and more accurately than by sex chromatin staining, and has the additional advantage that the same DNA preparation can be used for other diagnostic tests. A dot hybridisation method has been successfully used to provide even more rapid results than conventional hybridisation to Southern blots of restriction endonuclease digests.There is a risk that Y chromosome-specific DNA probes for sex determination may be subject to error if the parents have extreme Y chromosome variants such as a small or non-fluorescent Y or a Y autosome chromosome translocation. The precise extent to which such chromosome variants may lead to error has been investigated. Even extreme Y chromosome variants totally lacking fluorescence were identified as male by the cloned probes used. However, Y autosome translocations carried by females could cause error if not identified in the parents. The value of the probes has been confirmed provided that parental chromosomes and DNA are examined in parallel with the chorionic biopsy material  相似文献   

8.
Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method that amplifies a target sequence specifically under isothermal conditions. The objective of this study was to identify a Y chromosome-specific sequence in water buffalo and to establish an efficient procedure for embryo sexing by LAMP. The homologues of a Y chromosome-specific sequence, bovine repeat Y-associated.2, in swamp and river buffalo were cloned, and designated swamp buffalo repeat Y-associated.2 and river buffalo repeat Y-associated.2, respectively. Sexing by LAMP was performed using primers for swamp buffalo repeat Y-associated.2. A 12S rRNA was also amplified by LAMP as a control reaction in both male and female. The minimal amount of the template DNA required for LAMP appeared to be 0.1-10 pg. The sensitivity was further examined using swamp buffalo fibroblasts as templates. When fibroblasts were lysed with NaOH, the minimal cell number required for detection of both male-specific and male-female common DNA appeared to be two cells, whereas correct determination of sex could not be achieved using fibroblasts lysed by heat denaturation. Embryo sexing was also performed using blastomeres from interspecies nuclear transfer embryos. The sex determined by LAMP for blastomeres corresponded with the sex of nuclear donor cells in analyses using four or five blastomeres as templates. The LAMP reaction required only about 45 min, and the total time for embryo sexing, including DNA extraction, was about 1 h. In conclusion, the present procedure without thermal cycling and electrophoresis was reliable and applicable for water buffalo embryos.  相似文献   

9.
This study was conducted to determine the sex of buffalo embryos produced in vitro by amplifying male specific DNA sequences using the polymerase chain reaction (PCR). This method uses three different pairs of bovine Y-chromosome specific primers and a pair of bovine satellite specific primers. Buffalo in vitro fertilized embryos at the 4-cell to blastocyst stage were collected at days 3, 4, 6, and 8 postinsemination, and the sex of each embryo was determined using all three different Y-chromosome specific primers. The bovine satellite sequence specific primers recognize similar sequences in buffalo and are amplified both in males and in females. Similarly, Y-chromosome specific primers amplify the similar Y-chromosome specific sequences in male embryos of buffalo. Upon examining genomic DNA from lymphocytes of adult males and females, and embryos, the results demonstrate the feasibility of embryo sexing in buffaloes. Furthermore, sex determination by PCR was found to be a rapid and accurate method. © 1993 Wiley-Liss, Inc.  相似文献   

10.
A method for determining the sex of human skeletons was developed using molecular genetic techniques. The amelogenin gene, found on the X and Y chromosomes, was examined using the polymerase chain reaction (PCR) and a nonradioactive dot blot procedure. DNA was analyzed from 20 modern individuals of known sex and 20 skeletons from an archaeological site in central Illinois dating to A.D. 1300. An independent assessment of the sex of each skeleton was made according to standard osteological methods. The sex of 19 ancient and 20 modern individuals was accurately determined using this molecular genetic technique. Molecular sex determination will be especially useful for juvenile and fragmentary remains when it is difficult, or impossible, to establish an individual's sex from morphological features. © 1996 Wiley-Liss, Inc.  相似文献   

11.
We have developed a method that allows the prenatal DNA diagnosis of ornithine transcarbamylase (OTC) deficiency by using a single fetal nucleated erythrocyte (NRBC) isolated from maternal blood. OTC gene analysis of a male patient (TF) with early onset OTC deficiency was performed by single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing. To investigate the possible prenatal diagnosis of OTC deficiency, maternal blood was obtained at 13 weeks of gestation of a subsequent pregnancy, from the mother of patient TF. NRBCs in the maternal blood were separated by using the density gradient method and then collected with a micromanipulator. The entire genome of a single NRBC was amplified by primer extension preamplification (PEP). The human leukocyte antigen (HLA)-DQ alpha genotype and sex were determined from small aliquots of the PEP product. The HLA-DQ alpha genotype of each of the parents of the male patient was also determined. Once a single NRBC had been identified as being of fetal origin, the OTC gene was analyzed by using the restriction fragment length polymorphism (RFLP) method. DNA analysis revealed a point mutation in exon 9 of the OTC gene in the OTC-deficient patient (TF). All NRBCs retrieved from maternal blood were successfully identified as being of fetal origin by HLA-DQ alpha genotyping and sex determination. RFLP analysis demonstrated that the fetal OTC gene was normal. This is the first study to successfully diagnose OTC deficiency prenatally, by using a single fetal NRBC from the maternal circulation. Such prenatal DNA diagnosis is non-invasive and can be applied to other genetic diseases, including autosomal and X-linked diseases. Received: 19 December 1997 / Accepted: 14 February 1998  相似文献   

12.
In birds, offspring sex ratio manipulation by mothers is now well established with potentially important consequences for evolution and animal breeding. In most studies on primary sex ratio of birds, eggs are sexed after incubation by the use of PCR methods targeted to the sex-linked CHD1 genes. Sexing of unincubated eggs would be preferred, but as fertile and infertile blastodiscs cannot be distinguished macroscopically, errors could arise from PCR amplifications of parental DNA associated with the vitelline membrane of infertile eggs. In this study, we stained blastodiscs without the vitelline membrane with Hoechst 33342. This allowed unequivocal distinction between fertile and infertile blastodiscs. Fertile blastodiscs contained thousands of fluorescent nuclei, whereas no nuclei were seen in infertile eggs. In addition, after nucleic acid analysis, fertile blastodiscs yielded much stronger chromosomal DNA and CHD1-targeted PCR bands on agarose gels compared with infertile blastodiscs. These findings indicate that fertile blastodiscs contain much more embryonic DNA than parental DNA, allowing reliable sexing of the fertile eggs. The differences between fertile and infertile blastodiscs in chromosomal DNA and CHD1 PCR banding intensities alone could also be used to distinguish fertile from infertile eggs without using Hoechst staining. We conclude that identifying fertile blastodiscs either by Hoechst staining or by analyzing the yield of chromosomal DNA and CHD1-PCR products, combined with CHD1-targeted PCR amplification, presents an easy and reliable method to sex unincubated eggs.  相似文献   

13.
Sex-specific sequence variability of the amelogenin gene had been observed in a variety of mammalian species. In our study, the suitability of the amelogenin gene for sex determination in different species of the family Bovidae was examined. Based on a sequence insertion/deletion characteristic for X- and Y-specific amelogenin (AMELX and AMELY), PCR amplification on male and female genomic DNA from domestic and wild bovine species, sheep and goat, consistently displayed a sex-specific pattern. Thus, the amelogenin amplification by PCR proved to be a reliable method for sex determination not only in domestic and wild species of the tribe Bovini, but also in the related species sheep and goat. Sex determination using the amelogenin-based assay can be performed with at least 40 pg of genomic DNA. The assay enables the investigation of small amounts of DNA from meat, hair, bones, and embryo biopsies to identify species and sex for a number of applications in animal production, forensics, population research, and monitoring within the family Bovidae. Sequence comparison of the amplified amelogenin gene region specific for male and female animals from domestic and wild bovide species revealed further sequence variations within and between sexes as well as between species. Sequence variations in the AMELX gene can be applied to discriminate Bos and Bison individuals from other bovine species, and also from sheep and goat.  相似文献   

14.
Buffalo Y-chromosome specific repetitive DNA (BuRY.I) was cloned and sequenced in order to develop a sensitive method for sexing of buffalo preimplantation stage embryos using polymerase chain reaction (PCR). A highly sensitive and reliable sex determination assay using a primary (BRY.I), nested (BuRYN.I) and multiplex (BuRYN.I, ZFX/ZFY) PCR was developed. The BRY.I and BuRYN.I primers are targeted to amplify Y-specific sequences, while the ZFX/ZFY loci was amplified to serve as a positive control for both male and female samples. Accuracy of the sex determination assay was initially verified with genomic DNA obtained from blood of known gender. Further sensitivity and reproducibility of the assay was examined using DNA obtained from 1 or 2 blastomeres to demi embryos. Altogether, 80 IVF-derived embryos ranging from the 2 to 4 cell to the blastocyst stage were used for sex determination. Definite and clear signals following PCR amplification were obtained from all embryo samples. Accuracy of assays was determined by comparing results from a single cell with those of blastocyst stage embryos, thereby indicating that 1 or 2 blastomeres from a preimplantation buffalo embryo is sufficient for sex determination by PCR. No misidentification was observed within the embryo samples using nested (BuRY.I), primary (BRY.I) and multiplex (BuRYN.I; ZFX/ZFY) PCR, suggesting that this technique is a highly reliable method for sexing buffalo embryos.  相似文献   

15.
Sex-specific DNA markers can serve as efficient tools for molecular sex identification and thus provide important information for ecological and evolutionary studies, as well as for fishery management. In the present study, microsatellite markers were employed to identify sex-linked markers in the rock bream (Oplegnathus fasciatus). A microsatellite marker, designated as Oplfa16, displayed a male-specific genotype in rock bream. The male-specific microsatellite marker was further tested in 82 individuals, ensuring reproducible sex identification. Therefore, we developed a rapid and reliable method for sex identification in rock bream by using a novel sex-linked microsatellite marker.  相似文献   

16.
Molecular methods have been devised for sexing Mediterranean fruit fly (medfly) individuals using minimal amounts of material from any stage of the life cycle. Molecular sexing methods are particularly valuable when material is obtained from pre-adult stages and sex identification based on morphological characters is not possible. These methods may also be useful for adult stage material in situations where only limited amounts or poorly preserved specimens are available. The sexing methods described here use the polymerase chain reaction (PCR) to amplify sequences known to originate from the sex chromosomes of this species. One method co-amplifies homologous regions of the ITS1 ribosomal DNA from both the X and Y chromosomes. Males and females are distinguished based on the restriction fragment pattern produced after digestion of the PCR products with the restriction enzyme ApoI. A second method identifies males based on the positive amplification of a repetitive DNA sequence originating from the Y chromosome. Both methods are shown to be capable of establishing the sex identity of individuals using only minimal amounts of material from any stage of the life cycle.  相似文献   

17.
We studied the sex ratio of Bluethroat Luscinia svecica broods using AFLPs. Our aim was to test whether there is a bias towards males that could be explained by sexual selection theories, or conversely, a bias towards females that could help explain the female-biased sex ratio among juveniles observed at a wintering site. The AFLP technique was reliable in sexing the nestlings from even small initial DNA quantities. Given the large number of polymorphic markers that can be obtained for each primer combination, the probability of detecting a W-chromosome-linked fragment is reasonably high. As a consequence, this method could be used in other species for sex-ratio studies and for other genetic purposes. Among 246 nestlings, we found an overall proportion of males of 50.8% at hatching and the sex-ratio variation using broods as independent units was not significantly different from expectation under a binomial distribution. None of the parental and environmental variables tested changed significantly the deviance to the model. Thus, sex determination in the Bluethroat seems to match the classical Mendelian model of a 1:1 sex ratio and cannot explain the biased sex ratio towards juvenile females found at the wintering site.  相似文献   

18.
Y染色体上的性别决定区域——SRY基因作为睾丸决定因子,可以调控男性性别发育过程。SRY基因是一种转录因子,属于带有高迁移率族蛋白家族,该家族成员包含能与DNA结合的HMG盒基序。已知SRY基因的缺失和点突变是造成XY女性性反转的病因之一。通过筛查10位中国46,XY女性性反转病人SRY基因的开放阅读框区域,探寻新的突变类型。用标准方法从外周血中抽提gDNA,通过聚合酶链式反应扩增SRY基因中部的609bp的DNA片段。扩增后的PCR片段被克隆到pUCm-T载体中,在ABI377-3自动测序仪上完成测序。运用限制性内切酶酶切分析的方法验证DNA测序的结果。结果表明,在两个患者的SRY基因中分别发现了新的核苷酸点突变,并都导致氨基酸替代。一个突变发生在SRY基因的5’端HMG盒外的核苷酸第113位腺嘌呤(A)被鸟嘌呤(G)取代,并导致谷氨酸被甘氨酸替换;另一个突变是第387位核苷酸发生T被A替换,该突变引起第129位的酪氨酸变成终止密码,她父亲的SRY序列被证明是正常的野生型。通过查询文献和人类基因突变数据库(HGMD),这两个突变都是以前未见报道过的新型SRY基因突变,并使因核苷酸替换引起SRY基因突变总数增加到45。  相似文献   

19.
PURPOSE: The aim of this study was the assessment of vitreous humor as a potential DNA for forensic human postmortem identification. MATERIAL AND METHODS: Vitreous humor samples were collected using two alternative approaches from 25 corpses of either sex during autopsies. DNA was extracted by standard organic method. Recovered DNA was quantitiated fluorometrically. AmpFlSTR SGM Plus kit and ABI 310 Genetic Analyzer (Applera) were used to obtain genetic profiles. RESULTS: Different DNA yields were quantitated in vitreous body depending on cause of death and sampling approach. CONCLUSION: Vitreous humor is a potential DNA for forensic human postmortem identification depending on a sampling method used.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号