首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen in its particulate β-form is localized in the sarcoplasm close to the sarcoplasmic reticulum. Some particles are in close contact with the membranes, on the outer side of the vesicles. The mild technique of differential precipitation-centrifugation has been adapted to the preparation of glycogen from adult skeletal muscle. A preliminary low-speed centrifugation which eliminates the contractile protein structures and the cell debris is followed by a high-speed centrifugation which produces pellets containing glycogen mixed with smooth-walled vesicles, the glycogen-sarcovesicular fraction. The glycogen obtained after treatment of this fraction with deoxycholate and two washings contains 3% protein. A similar protein content contaminates glycogen banded in a linear sucrose gradient. The glycogen-sarcovesicular fraction and the purified glycogen have been examined, under the electron microscope, in sections of fixed and embedded material or with the negative staining technique. The glycogen β-particles in negatively stained preparations have an average diameter of 39.4 mµ. The largest particles present irregular outlines, suggesting the presence of conglomerated subunits, about 20 mµ in diameter. These subunits seem to fall apart under the influence of concentrated potassium hydroxide. The mean sedimentation coefficients calculated for infinite dilution vary from 115 to 135S. The spectrophotometric analysis of the glycogen-iodine complex indicates the presence of long end-chains in the molecule.  相似文献   

2.
The fine structure of ascitic cells, consisting of 87–92% heterophil, 5–10% eosinophil leukocytes, and 3% macrophages, is well preserved by glutaraldehyde-osmium tetroxide fixation only when the osmolality of the fixative is appropriately balanced. The β-glycogen particles, 35–45 mµ in diameter, are found either as large accumulations in the perinuclear region or in a dispersed form in peripheral cytoplasm. In the heterophils, they are embedded in a coarse-grained ground substance. Extraction and purification of the glycogen were performed by differential precipitation-centrifugation. Yield (35% recovery), purity (4% protein contamination), and preservation of a high sedimentation coefficient (240S) represent the main advantages of the proposed procedure. The analysis of the profile of the sedimentation curve, together with an analysis of the particle size measurements and of particle fine structure, leads to the conclusion that the β-particles form a homogeneous population with a gaussian distribution curve. Each particle consists of smaller units which increase in number with increasing size, the largest ones taking on the appearance of small rosettes. The glycogen particles of the microsomal fraction, still loaded with phosphorylase, were submitted to a synthetic activity by incubation in the presence of glucose-l-phosphate. The analysis of the particle growth shows that particles of all sizes respond equally well.  相似文献   

3.
Sarcoplasmic reticulum fragments isolated from dog cardiac muscle possess a calcium-accumulating system associated with a series of enzymes linked to glycogenolysis. These enzymes include: adenylate cyclase, cyclic AMP-dependent protein kinase, phosphorylase b kinase, phosphorylase (b/a, 30/1),"debrancher" enzyme, and glycogen (0.3 to 0.7 mg/mg of protein). The sarcoplasmic reticulum preparation produced glucose 1-phosphate and glucose from either endogenous or exogenous glycogen. Both the calcium-accumulating and glycogenolytic enzymes sediment in a single peak at 33% sucrose on a linear continous sucrose density gradient, and the complex remains intact throughout repeated washing. Glycogen particles appear to be associated with the sarcoplasmic reticulum in situ as well as in the isolated microsomal fraction. The sarcoplasmic reticulum-glycogenolytic complex, monitored by a linked enzyme spectrophotometric assay, shows several features: (a) activation of phosphorylase activity to peak rate occurs over a very rapid time course which cannot be duplicated using combinations of purified enzymes; (b) activation is inhibited by protein kinase inhibitor; (c) phosphorylase b functions as in the purified form with respect to AMP (Km, 0.3 mM); (d) in the presence of limiting amounts of glycogen, optimal phosphorylase b activity in the sarcoplasmic reticulum requires the presence of debrancher, and the activity is sensitive to inhibitors of that enzyme such as Tris, which suggests the possiblity that the enzymes bear a specific structual relationship to the glycogen present. Phosphorylase b leads to a activation in the sarcoplasmic reticulum was completely resistant to ethylene glycol bis(beta-aminoethyl either)-N,N'-tetraacetic acid (EGTA). Inhibition of calcium accumulation by or release of bound calcium from sarcoplasmic reticulum by X537A (RO 2-2985) did not alter the EGTA resistance. These results suggest that cardiac sarcoplasmic reticulum is a complex organelle containing functions that may be related to excitation-contraction coupling and intermediary metabolism.  相似文献   

4.
The pancreatic exocrine cell of the guinea pig has a voluminous endoplasmic reticulum distinguished by extensive association with small, dense particles, and by its orderly disposition in the basal region of the cell. In addition to the small, (~15 mµ), dense particles attached to the limiting membrane of the endoplasmic reticulum, numerous particles of similar appearance are found freely scattered in the cytoplasmic matrix. The various cell structures of pancreatic exocrine cells can be satisfactorily identified in pancreatic homogenates. The microsome fraction consists primarily of spherical vesicles (80 to 300 mµ), limited by a thin membrane (7 mµ) which bears small (~15 mµ) dense particles attached on its outer surface. The content of the microsomal vesicles is usually of high density. Pancreatic microsomes derive by extensive fragmentation mainly from the rough surfaced parts of the endoplasmic reticula of exocrine cells. A few damaged mitochondria and certain dense granules (~150 mµ) originating probably from islet cells, contaminate the microsome fraction. Pancreatic microsomes contain RNA, protein, and a relatively small amount of phospholipide and hemochromogen. They do not have DPNH-cytochrome c reductase activity. In six experiments the RNA/protein N ratios were found grouped around two different means, namely 0.6 and 1.3. Pancreatic microsomes are more labile than liver microsomes but react in a similar way to RN-ase-(loss of the particulate component and RNA), and deoxycholate treatment (loss of the membranous component and of phospholipide, hemochromogen, and most of the protein). Postmicrosomal fractions consisting primarly of small (~15 mµ), dense particles of ribonucleoprotein (RNA/protein N ratio = 1 to 2) were obtained by further centrifugation of the microsomal supernatant. The small nucleoprotein particles of these fractions are frequently found associated in chains or clusters.  相似文献   

5.
Alpha-glucan phosphorylase catalyzes the reversible cleavage of α-1-4-linked glucose polymers into α-D-glucose-1-phosphate. We report the recombinant production of an α-glucan/maltodextrin phosphorylase (PF1535) from a hyperthermophilic archaeon, Pyrococcus furiosus, and the first detailed biochemical characterization of this enzyme from any archaeal source using a mass-spectrometry-based assay. The apparent 98 kDa recombinant enzyme was active over a broad range of temperatures and pH, with optimal activity at 80 °C and pH 6.5–7. This archaeal protein retained its complete activity after 24 h at 80 °C in Tris-HCl buffer. Unlike other previously reported phosphorylases, the Ni-affinity column purified enzyme showed broad substrate specificity in both the synthesis and degradation of maltooligosaccharides. In the synthetic direction of the enzymatic reaction, the lowest oligosaccharide required for the chain elongation was maltose. In the degradative direction, the archaeal enzyme can produce glucose-1-phosphate from maltotriose or longer maltooligosaccharides including both glycogen and starch. The specific activity of the enzyme at 80 °C in the presence of 10 mM maltoheptaose and at 10 mg ml–1 glycogen concentration was 52 U mg–1 and 31 U mg–1, respectively. The apparent Michaelis constant and maximum velocity for inorganic phosphate were 31 ± 2 mM and 0.60 ± 0.02 mM min–1 µg–1, respectively. An initial velocity study of the enzymatic reaction indicated a sequential bi-bi catalytic mechanism. Unlike the more widely studied mammalian glycogen phosphorylase, the Pyrococcus enzyme is active in the absence of added AMP.  相似文献   

6.
Upon fractionation of a post mitochondrial supernatant from rat liver, phosphorylase kinase activity was largely recovered in the cytosol and the smooth endoplasmic reticulum (SER) fraction. The presence of phosphorylase kinase in SER vesicles was not due to an interaction of the enzyme with glycogen particles, since previous elimination of SER glycogen either by 48 h animal starvation or by treatment of the membrane fraction with -amylase did not significantly alter phosphorylase kinase activity content. Washing of the initial pellet of SER fraction (crude SER) by dilution and recentrifugation, released in the supernatant an amount of phosphorylase kinase activity, which is dependent on: i) the degree of dilution, ii) the number of washes, iii) the ionic strength of the washing solution and iii) the presence or absence of Ca2+. Crude SER-associated phosphorylase kinase was marginally affected by increased concentrations of antibody against rabbit skeletal muscle holoenzyme which nevertheless drastically inhibited cytosolic enzyme activity, while it showed a higher resistance to partial proteolysis and a different Western blotting profile with anti-phosphorylase kinase when compared with the soluble kinase. A small but significant fraction of SER phosphorylase kinase was strongly associated with the microsomal fraction being partly extractable only in presence of detergents. This membrane-bound enzyme form exhibited an alkaline pH optimum, in contrast to the neutral pH optima of both soluble and weakly associated phosphorylase kinase.Abbreviations SER smooth endoplasmic reticulum - RER rough endoplasmic reticulum - PMS post mitochondrial supernatant - MES 2-(N-morpholino) ethane sulfonic acid - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

7.
Hypercholesterolemia impairs the quantity and function of endothelial progenitor cell. We hypothesized that glycogen synthase kinase 3β activity is involved in regulating biological function of endothelial progenitor cells in hypercholesterolemia microenvironment. For study, endothelial progenitor cells derived from apolipoprotein E-deficient mice fed with high-fat diet were used. Glycogen synthase kinase 3β activity was interfered with glycogen synthase kinase 3β inhibitor lithium chloride or transduced with replication defective adenovirus vector expressing catalytically inactive glycogen synthase kinase 3β (GSK3β-KM). Functions of endothelial progenitor cells, proliferation, migration, secretion and network formation of endothelial progenitor cells were assessed in vitro. The expression of phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 in endothelial progenitor cells was detected by Western blot. The in vivo function re-endothelialization and vasodilation were also analyzed by artery injury model transplanted with glycogen synthase kinase 3β-inhibited endothelial progenitor cells. We demonstrated that while the proliferation, migration, network formation as well as VEGF and NO secretion were impaired in apolipoprotein E-deficient endothelial progenitor cells, glycogen synthase kinase 3β inhibition significantly improved all these functions. Apolipoprotein E-deficient endothelial progenitor cells showed decreased phospho-glycogen synthase kinase 3β, β-catenin and cyclinD1 expression, whereas these signals were enhanced by glycogen synthase kinase 3β inhibition and accompanied with β-catenin nuclear translocation. Our in vivo model showed that glycogen synthase kinase 3β inhibition remarkably increased re-endothelial and vasodilation. Taken together, our data suggest that inhibition of glycogen synthase kinase 3β is associated with endothelial progenitor cell biological functions both in vitro and in vivo. It might be an important interference target in hypercholesterolemia microenvironment.  相似文献   

8.
Pan SM  Chang TC  Juang RH  Su JC 《Plant physiology》1988,88(4):1154-1156
The proteinaceous noncompetitive inhibitor of starch phosphorylase isolated from the root of sweet potato (Ipomoea batatas [L.] Lam.) (TC Chang, JC Su 1986 Plant Physiol 80: 534-538) has been identified as a β-amylase. The starch phosphorylase inhibitor and β-amylase activities copurified to give a protein indistinguishable from commercial β-amylase by electrophoretic and immunological methods, and the two activities showed parallel responses in pH, temperature, and inhibitor sensitivity tests. The amylolytic pattern of the inhibitor corresponded to that of β-amylase and its inhibitory effect toward starch phosphorylase was due to neither deprivation of starch, the primer for the phosphorylase assay, nor the inhibitory effect of amylolytic products.  相似文献   

9.
The sarcoplasmic reticulum (SR) of rabbit skeletal muscle was studied after isolation of a vesicle fraction and of vesicular subfractions by means of differential and density gradient centrifugations. The different fractions were examined electron microscopically by negative and positive staining; their content in protein and phospholipid and their ability to bind Ca++ were determined. After homogenization, differential centrifugation yielded a "sarcovesicular fraction" (SVF) which was mainly composed of numerous vesicles of different types mixed with fibrous proteins and mitochondrial fragments. This SVF contained 2% of the protein and 25% of the phospholipid of the initial tissue extract. It had a high Ca++ binding activity that was preserved for several days by storage in the presence of oxalate. After centrifugations of the SVF on sucrose density gradients, two vesicular subfractions were obtained which were characterized by different sedimentation rates, isopycnic banding, morphology, and composition in protein and phospholipid. (a) The low-density subfraction (ρ 1.10–1.12) contained a heterogeneous population of membranous structures: thick- and thin-walled vesicles, tubular formations, triads, and plasma membranes. Its content in protein and phospholipid was very low. (b) The high-density subfraction (ρ 1.13–1.17) was a very pure subfraction composed only of thin-walled vesicles. Its content in phospholipid was high and the ratio of phospholipid-phosphorus to protein was about 20. The calcium-binding activity found in the total SVF was recovered only in this latter homogeneous subfraction. The origin of these two subfractions from the SR is discussed.  相似文献   

10.
1. 1. Calcium transport into microsomal vesicles of respiratory (tracheal) smooth muscle was characterized. This calcium transport was ATP dependent and stimulated by the presence of the oxalate ion. The magnitude of transport was similar to that reported for microsomes from other types of smooth muscle.
2. 2. Bovine and rabbit, heavy and light microsomes were isolated from respiratory (tracheal) and vascualar (aortic) smooth muscle. Preincubation of these vesicles with cyclic AMP and protein kinase did not alter the transport of calcium into the vesicles. There was no evidence of phosphate incorporatio into microsomal membrane proteins. Similar results were obtained if phosphorylase b kinase replaced the combination of cyclic AMP and protein kinase during the preincubation.
3. 3. The phosphoprotein phosphatase activity of cardiac sarcoplasmic reticulum and smooth muscle microsomes was determined. The activity of this enzyme was found to be several-fold less in the cardiac sarcoplasmic reticulum than in various smooth muscle microsome preparations.
Abbreviations: EGTA; ethyleneglycol-bis(β-aminoethylether)N; N′-tetracetic acid  相似文献   

11.
Calcium transport into sarcoplasmic reticulum fragments isolated from dog cardiac and mixed skeletal muscle (quadriceps) and from mixed fast (tibialis), pure fast (caudofemoralis) and pure slow (soleus) skeletal muscles from the cat was studied. Cyclic AMP-dependent protein kinase and phosphorylase b kinase stimulated the rate of calcium transport although some variability was observed. A specific protein kinase inhibitor prevented the effect of protein kinase but not of phosphorylase b kinase. The addition of cyclic AMP to the sarcoplasmic reticulum preparations in the absence of protein kinase had only a slight stimulatory effect despite the presence of endogenous protein kinase. Cyclic AMP-dependent protein kinase catalyzed the phosphorylation of several components present in the sarcoplasmic reticulum fragments; a 19000 to 21 000 dalton peak was phosphorylated with high specific activity in sarcoplasmic reticulum preparations isolated from heart and from slow skeletal muscle, but not from fast skeletal muscle. Phosphorylase b kinase phosphorylated a peak of molecular weight 95000 in all of the preparations. Cyclic AMP-dependent protein kinase-stimulated phosphorylation was optimum at pH 6.8; phosphorylase b kinase phosphorylation had a biphasic curve in cardiac and slow skeletal muscle with optima at pH 6.8 and 8.0. The addition of exogenous phosphorylase b kinase or protein kinase increased the endogenous level of phosphorylation 25-100%. All sarcoplasmic reticulum preparations contained varying amounts of adenylate cyclase, phosphorylase b and a (b:a = 30.1), "debrancher" enzyme and glycogen (0.3 mg/mg protein), as well as varying amounts of protein kinase and phosphorylase b kinase which were responsible for a significant endogenous phosphorylation. Thus, the two phosphorylating enzymes stimulated calcium uptake in the sarcoplasmic reticulum of a variety of muscles possessing different physiologic characteristics and different responses to drugs. In addition, the phosphorylation catalyzed by these enzymes occurred at two different protein moieties which make physiologic interpretation of the role of phosphorylation difficult. While the role phosphorylation in these mechanisms is complex, the presence of a glycogenolytic enzyme system may be an important link in this phenomenon. The sarcoplasmic reticulum represents a new substrate for phosphorylase b kinase.  相似文献   

12.
To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16–d84], equal to [0.15 µm–0.5 µm], [0.25 µm–1 µm], or [1 µm–9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm–9 µm] aerosol (72%±17%). The [0.15 µm–0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84%±4%). Airborne particles in the range of [0.25 µm–1 µm] showed an intermediate deposition pattern, with 49%±8% in the extrathoracic region and 51%±8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm–9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.  相似文献   

13.
Native glycogen was isolated from Tetrahymena pyriformis (HSM) by isopycnic centrifugation in cesium chloride density gradients. A density of 1.62 to 1.65 was isopycnic for glycogen. Most of the banded glycogen existed as 35 to 40 mµ particles which had a sedimentation coefficient of 214. These particles were composed of aggregates of 2 to 3 mµ spherical particles. Extraction of glycogen with hot alkali reduced the sedimentation coefficient of native glycogen from 214 to 64.7 and the particle diameter from approximately 40 to 20 mµ and smaller. Cell division was synchronized by a repetitive 12-hour temperature cycle, and glycogen was measured at several times during the cell cycle. The temperature cycle consisted of 9.5 hours at 12°C and 2.5 hours at 27°C. Approximately 90 per cent of the cells divided during the last 1.5 hours of the warm period. The carbohydrate/protein ratio of cells at the end of the cold period was 0.27 and was reduced slightly during the warm period. Glucose was incorporated into glycogen during both periods, although the rate of incorporation was greater during the warm period. No preferential incorporation on the basis of particle size was noted. Incorporation was measured in both native glycogen and KOH-extracted glycogen. Tetrahymena glycogen is compared with rat liver glycogen previously isolated by similar procedures, and the significance of using combined rate-zonal and isopycnic centrifugation for isolating native glycogen is discussed.  相似文献   

14.
Microsomes, isolated from rat liver homogenate in 0.88 M sucrose, have been fractionated by differential centrifugation. The 2nd microsomal fraction, sedimented between 60 minutes at 105,000 g and 3 hours at 145,000 g, consists mainly of smooth vesicles, free ribosomes, and ferritin. By utilizing the differences in density existing between the membranes and the granular elements it has been possible to separate the smooth membranes from the free ribosomes and ferritin. The procedure is to resuspend the 2nd microsomal fraction in a sucrose solution of 1.21 or 1.25 density and centrifuge it at 145,000 g for 20 or 40 hours. A centripetal migration of membranes and a centrifugal sedimentation of granular elements are obtained. Phospholipids, as well as the enzymatic activities DPNH-cytochrome c reductase, glucose-6-phosphatase and esterase are localized in the membranes. The free ribosomes have been purified by washing. A concentration of 200 µg RNA per mg nitrogen has been reached. RNA is also present in the membranes. These results are discussed in relation to current views on microsomal structure and chemistry.  相似文献   

15.
1. Microsomes were isolated from rabbit fast-twitch and slow-twitch muscle and were separated into heavy and light fractions by centrifugation in a linear (0.3–2m) sucrose density gradient. The membrane origin of microsomal vesicles was investigated by studying biochemical markers of the sarcoplasmic-reticulum membranes and of surface and T-tubular membranes, as well as their freeze-fracture properties. 2. Polyacrylamide-gel electrophoresis showed differences in the Ca2+-dependent ATPase/calsequestrin ratio between heavy and light fractions, which were apparently consistent with their respective origin from cisternal and longitudinal sarcoplasmic reticulum, as well as unrelated differences, such as peptides specific to slow-muscle microsomes (mol.wts. 76000, 60000, 56000 and 45000). 3. Freeze-fracture electron microscopy of muscle microsomes demonstrated that vesicles truly derived from the sarcoplasmic reticulum, with an average density of 9nm particles on the concave face of about 3000/μm2 for both fast and slow muscle, were admixed with vesicles with particle densities below 1000/μm2. 4. As determined in the light fractions, the sarcoplasmic-reticulum vesicles accounted for 84% and 57% of the total number of microsomal vesicles, for fast and slow muscle respectively. These values agreed closely with the percentage values of Ca2+-dependent ATPase protein obtained by gel densitometry. 5. The T-tubular origin of vesicles with a smooth concave fracture face in slow-muscle microsomes is supported by their relative high content in total phospholipid and cholesterol, compared with the microsomes of fast muscle, and by other correlative data, such as the presence of (Na++K+)-dependent ATPase activity and of low amounts of Na+-dependent membrane phosphorylation. 6. Among intrinsic sarcoplasmic-reticulum membrane proteins, a proteolipid of mol.wt. 12000 is shown to be identical in the microsomes of both fast and slow muscle and the Ca2+-dependent ATPase to be antigenically and catalytically different, though electrophoretically homogeneous. 7. Basal Mg2+-activated ATPase activity was found to be high in light microsomes from slow muscle, but its identification with an enzyme different from the Ca2+-dependent ATPase is still not conclusive. 8. Enzyme proteins that are suggested to be specific to slow-muscle longitudinal sarcoplasmic reticulum are the flavoprotėin NADH:cytochrome b5 reductase (mol.wt. 32000), cytochrome b5 (mol.wt. 17000) and the stearoyl-CoA desaturase, though essentially by criteria of plausibility.  相似文献   

16.
Summary A microsomal fraction consisting of membranes of transverse tubule origin has been purified by a modification of the calcium-loading procedure initially described by Rosemblatt et al. (J Biol Chem 256:8140–8, 1981). Enzymatic analysis of this fraction shows an enrichment of the vesicles in the Mg++ATPase (basal) activity characteristic of the T-tubules and an absent or very low Ca++-dependant ATPase activity. Stereological analysis of freeze fracture replica of the membranes in the purified fraction indicates that they have a very low density of particles in their P faces and lack the structural manifestation of the caveolae typical of the sarcolemma. Immunological analysis performed with monoclonal antibodies prepared against purified T-tubule and sarcoplasmic reticulum membranes define some T-tubule specific antigens and confirm the morphological and biochemical data regarding the origin and purity of the Ttubule preparation.  相似文献   

17.
The genetic locus for alleles (+k and k) that determine the presence and absence of the muscle enzyme, phosphorylase kinase, has been located on the X chromosome of the mouse. The inheritance of glycogen content in resting skeletal muscle follows the Mendelian pattern, and the genes which determine it must also be sex-linked. Evidence is presented which strongly suggests that one of the major determinants of glycogen concentration is phosphorylase kinase; inverse correlations of the enzyme and glycogen were found during neonatal development and among hybrid females, where content of phosphorylase kinase in muscle is highly variable. This variability in kinase content also determines the degree of the epinephrine effect (formation of phosphorylase a) in these hybrid females. The hybrid mice (F1, F2, and first backcross) were obtained from crosses of I/FnLn and C57BL/FnLn mice. Adult mice of the I strain completely lack phosphorylase kinase in skeletal muscle and have a high glycogen content.This paper was presented at a symposium entitled Genetic Control of Mammalian Metabolism held at The Jackson Laboratory, Bar Harbor, Maine, June 30–July 2, 1969. The symposium was supported in part by an allocation from NIH General Research Support Grant FR 05545 from the Division of Research Resources to The Jackson Laboratory.This research was supported by grants (AM 03524 and GM-K3-4120) from the National Institutes of Health. Contribution No. 931 from the Division of Basic Health Sciences.  相似文献   

18.
The binding of oestradiol-17β to two proteins, namely serum albumin and a uterus fraction, was studied in vitro. The former protein has a physiological function in the transport of the hormone and the latter is involved in the selective uptake of the steroid by the target organ. The uterus fraction shows a high degree of stereospecificity for the binding of the steroid. Cortisone, oestradiol-17α and testosterone are bound negligibly and progesterone to a much smaller extent than is oestradiol-17β. This property is in contrast with the wide variety of ligands bound by the serum albumin. The temperature and the presence of the steroid influence markedly the binding properties. Oestradiol binding to the uterus fraction is optimum at 37° and at pH7–8·5. It is markedly decreased at pH values above or below this range, suggesting stringent conformational requirements. The tissue `receptor' protein is a macromolecule with a minimum molecular weight of 100000. The protein moiety is essential for the binding function. The probable concentration of the total binding sites for oestradiol in the ovariectomized-rat uterus cytoplasmic fraction as determined in vitro is about 1mμm at a steroid concentration of 50mμm.  相似文献   

19.
Rat-kidney lysosomes: isolation and properties   总被引:2,自引:2,他引:0  
1. The activities of lysosomal enzymes in the cortexes and medullas and the principal subcellular fractions of rat kidney were measured. 2. A method is described for the isolation of rat-kidney lysosomes and a detailed analysis of the enzymic composition of the lysosomes is reported. Enzyme analysis of the other principal subcellular fractions is included for comparison. 3. Studies of the distribution of α-glucosidase showed that the lysosomal fraction contained only 10% of the total enzyme activity. The microsomal fraction contained most of the particulate α-glucosidase. Lysozyme was concentrated mainly in the lysosomal fraction with only small amounts present in the microsomal fraction. Lysosomal α-glucosidase had optimum pH5 whereas the microsomal form had optimum pH6. Both lysosomal and microsomal lysozyme had optimum pH6·2. 4. The stability of lysosomal suspensions was studied. Incubation at 37° and pH7 resulted in first an increased availability of enzymes without parallel release of enzyme. This was followed by a second stage during which the availability of enzymes was closely related to the release of enzymes. These changes were closely paralleled by changes in light-scattering properties of lysosomes. 5. The latent nature of the α-glucosidase and lysozyme of intact kidney lysosomes was demonstrated by their graded and parallel release with other typical lysosomal enzymes. 6. Isolated lysosomes were unstable at pH values lower than 5, most stable at pH6–7 and less stable at pH 8–9. Lysosomes were not disrupted when the osmolarity of the suspending medium was decreased from 0·6m to 0·25m. 7. The discussion compares the properties and composition of kidney lysosomes, liver lysosomes and the granules of macrophages. 8. The possible origin of the lysozyme in kidney lysosomes by reabsorption of the lysozyme in blood is discussed.  相似文献   

20.
The N-terminal part sequences of pituitary growth hormone, N-acetyl-hGH 7–13 and hGH 6–13, promoted conversion of glycogen synthase b to glycogen synthase a in skeletal muscle and adipose tissue when injected intravenously. The peptides also caused conversion of phosphorylase a to phosphorylase b in liver and adipose tissue, but not in muscle, where the peptides antagonised activation of phosphorylase. Synthase phosphatase activity in muscle and phosphorylase phosphatase activity in liver increased after injection of peptide, with time courses of change similar to those seen for muscle synthase and liver phosphorylase activities. Injection of peptide also decreased both the cyclic AMP dependent and independent synthase kinase activities in muscle. These results show that the insulin-like activities of these peptides on glycogen synthase and phosphorylase involve both increases in protein phosphatase activities and inhibition of protein kinase activities. These results are discussed in relation to the insulin-like activities of growth hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号