首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.  相似文献   

2.
We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.  相似文献   

3.
Many studies have provided evidence that hepatitis B surface antigen (HBsAg) including preS1 and preS2 sequences could be an ideal candidate for a new hepatitis B virus (HBV) vaccine with higher efficacy. However, the large (L) protein containing the entire preS region expressed in mammalian cells is not efficiently assembled into particles and secreted. Here we report an alternative approach to include the dominant epitopes of preS1 and preS2 to the small (S) protein as fusion proteins by the recombinant DNA technology. Three fusion proteins containing preS2(120-146) and preS1(21-47) at the N-terminus and/or truncated C-terminus of S protein were expressed using the recombinant vaccinia virus system. All these fusion proteins were efficiently secreted in the particulate form, and displayed S, preS1 and/or preS2 antigenicity. Further analysis showed that these chimeric HBsAg particles elicited strong antibody responses against S, preS1 and preS2 antigens in BALB/c mice, suggesting that they could be promising candidates for a new recombinant vaccine to induce broader antibody response required for protection against hepatitis B viral infection.  相似文献   

4.
目的:利用甲型流感病毒A/Johannesburg/33/94(H3N2)核壳蛋白(NP)全长肽库筛选BAI卫/c(H-2^d)小鼠中NP酶联免疫斑点法(EUSPOT)表位,研究其和细胞毒性T淋巴细胞(CTL)表位的一致性关系,为使用ELlSPOT评价流感病毒NP疫苗的细胞免疫效果提供实验依据。方法:以甲型流感病毒A/PR/8/34(H1N1)(PR8)感染BALB/c(H-2^d)小鼠后,通过检测T细胞分泌γ-干扰素(IFN-1)的ELISPOT法和体内CTL法检测NP所诱发的细胞免疫反应,综合分析ELlSPOT和CTL表位肽之间的关系。结果:Pep36(NP第141-155位氨基酸残基,SNLNDTTYQRTRALV)和Pep37(NP第145-159位氨基酸残基,DTTYQRTRALVRTGM)可以诱发较强的ELlSPOT反应,根据Pep36和Pep37共有序列合成的Pep147-155(NP第147-155位氨基酸残基,TYQRTRALV)可以诱发与这2条多肽相同强度的ELlSPOT反应,表明Pep147-155为NP诱发ELlSPOT反应的最强表位,体内CTL也表明它是最强的CTL表位;Pep95(NP第377-391位氨基酸残基,STLELRSRYWAIRTR)、Pep96(NP第381-395位氨基酸残基,LRSRYWAIRTRSGGN)和其他表位肽诱发的ELISPOT反应较弱,体内CTL反应也较弱。结论:BALB/c(H-2^d)小鼠中,甲型流感病毒NP诱发ELlSPOT反应和CTL反应的表位肽高度相关;实验结果为使用ELlSPOT评价流感病毒NP疫苗的细胞免疫效果提供了实验依据。  相似文献   

5.
Vaccination with either exogenous hepatitis B surface antigen (HBsAg) lipoprotein particles without adjuvants, or plasmid DNA encoding secreted small HBsAg stimulate long-lasting, potent antibody responses in H-2d (BALB/c) and C57Bl/6 (H-2b) mice. Vaccination with exogenous HBsAg primes MHC-I restricted cytotoxic T lymphocyte (CTL) responses to HBsAg in H-2d but not H-2b mice, while DNA vaccination primes HBsAg-specific CTL responses in both mouse strains. We defined vaccination strategies that could elicit CTL responses to exogenous HBsAg in 'low responder' C57Bl/6 mice. We found that the bacterial plasmid DNA itself, synthetic oligodeoxynucleotides containing immunostimulating sequences, or recombinant Th1 cytokines (IL12, IFNgamma) efficiently support priming of CTL responses to exogenous HBsAg in 'low responder' H-2b mice, but have only minor effects on CTL priming in 'high responder' H-2d mice in the high dose range tested. These molecularly well defined adjuvants can thus efficiently support priming of anti-viral T cell responses under 'low responder' conditions.  相似文献   

6.
The development of a vaccine based on human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) that elicits potent protective antibodies against infection has been challenging. Recently, we compared the antibody production patterns of HIV-1 Env gp120 and hepatitis B virus surface antigen (HBsAg) to provide insights into how we may improve the protective efficacy of Env-based immunogens. Our previous study showed that HIV Env and HBsAg display different mechanisms of antibody elicitation and that T cells facilitate the responses to repeated immunizations. Here, to elucidate the detailed roles of primary immunization in immune memory response formation and antibody production, we immunized C57BL/6 mice with each antigen and evaluated the development of T follicular helper (Tfh) cells, germinal centers, and the memory responses involved in prime and boost immunizations. We found that after prime immunization, compared with HBsAg, gp120 induced higher frequencies of Tfh cells and programmed death (PD)-1+ T cells, greater major histocompatibility complex II expression on B cells, comparable activated B cells, but weaker germinal center (GC) reactions and memory B cell responses in the draining lymph nodes, accompanied by slower antibody recall responses and poor immune memory responses. The above results suggested that more PD-1+ T cells arising in primary immunization may serve as major contributors to the slow antibody recall response elicited by HIV-1 Env.  相似文献   

7.
Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral particles, elicited humoral responses in MV-susceptible genetically modified mice. However, small differences in HBsAg expression elicited vastly different HBsAg antibody levels. The two vectors inducing the highest HBsAg antibody levels were inoculated into rhesus monkeys (Macaca mulatta). After challenge with a pathogenic MV strain (Davis87), control naive monkeys showed a classic measles rash and high viral loads. In contrast, all monkeys immunized with vaccine or a control nonvectored recombinant vaccine or HBsAg-expressing vectored MV remained healthy, with low or undetectable viral loads. After a single vaccine dose, only the vector expressing HBsAg at the highest levels elicited protective levels of HBsAg antibodies in two of four animals. These observations reveal an expression threshold for efficient induction of HBsAg humoral immune responses. This threshold is lower in mice than in macaques. Implications for the development of divalent vaccines based on live attenuated viruses are discussed.  相似文献   

8.
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.  相似文献   

9.
Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (10(6) infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8(+)-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein.  相似文献   

10.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

11.
To improve the immunogenicity of epitopes from the envelope protein of HIV-1, we have developed gene gun-delivered subunit DNA vaccines by inserting the sequences encoding the V3 region into the hepatitis B virus (HBV) envelope gene, often called the surface antigen (HBsAg). We have examined the possibility of modifying the immune response to V3 by introducing modifications into the carrier HBsAg in gene gun DNA immunization of mice. In some plasmid constructions, the V3 sequence was introduced into the preS2 region of the HBsAg. Although this region is not present in all protein subunits of the HBsAg particles produced, abolishing the internal translational initiation site for the S protein had no effect on the immune response to V3. Expression of V3 at the N-terminal or C-terminal part of the HBsAg protein resulted in equal anti-V3 antibody and cytotoxic T-lymphocyte (CTL) responses. However, elimination of secretion by single amino-acid mutations in the HBsAg decreased the anti-HBsAg antibody response but enhanced the anti-V3 antibody response. In contrast, the CTL response to V3 was independent of the structural mutations but could be improved by a total deletion of the HBsAg sequence part. Thus, the immune response to heterologous epitopes can be altered by modifications in the carrier HBsAg protein. Modifications of the HBsAg carrier might interfere with the dominant immune response to the HBsAg epitopes, allowing better antibody induction to less immunogenic foreign epitopes. However, for induction of CTL responses, the expression of minimal epitopes may be advantageous.  相似文献   

12.
Although sexually transmitted pathogens are capable of inducing pathogen-specific immune responses, vaginal administration of nonreplicating antigens elicits only weak, nondisseminating immune responses. The present study was undertaken to examine the potential of CpG-containing oligodeoxynucleotide (CpG ODN) for induction of chemokine responses in the genital tract mucosa and also as a vaginal adjuvant in combination with glycoprotein D of herpes simplex virus type 2 (HSV-2) for induction of antigen-specific immune responses. We found that a single intravaginal administration of CpG ODN in mice stimulates a rapid and potent response of CC chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES as well as of CXC chemokines MIP-2 and IP-10 in the vagina and/or the genital lymph nodes. Importantly, intravaginal vaccination with recombinant gD2 in combination with CpG ODN gave rise to a strong antigen-specific Th1-like immune response in the genital lymph nodes as well as the spleens of the vaccinated mice. Further, such an immunization scheme conferred both systemic and mucosal immunoglobulin G antibody responses as well as protection against an otherwise lethal vaginal challenge with HSV-2. These results illustrate the potential of CpG ODN for induction of potent chemokine responses in the genital tract and also as a vaginal adjuvant for generation of Th1-type mucosal and systemic immune responses towards a nonreplicating antigen derived from a sexually transmitted pathogen. These data have implications for the development of a mucosal vaccine against genital herpes and possibly other sexually transmitted diseases.  相似文献   

13.
G Ge  S Wang  Y Han  C Zhang  S Lu  Z Huang 《PloS one》2012,7(7):e41573
Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.  相似文献   

14.
MHC-I-restricted CTL responses of H-2(d) (L(d+) or L(d-)) and F(1) H-2(dxb) mice to hepatitis B surface Ag (HBsAg) are primed by either DNA vaccines or HBsAg particles. The D(d)/S(201-209) and K(d)/S(199-208) epitopes are generated by processing endogenous HBsAg; the K(b)/S(208-215) epitope is generated by processing exogenous HBsAg; and the L(d)/S(28-39) epitope is generated by exogenous as well as endogenous processing of HBsAg. DNA vaccination primed high numbers of CTL specific for the L(d)/S(28-39) HBsAg epitope, low numbers of CTL specific for the D(d)/S(201-209) or K(d)/S(199-208) HBsAg epitopes in BALB/c mice, and high numbers of D(d)/S(201-209)- and K(d)/S(199-208)-specific CTL in congenic H-2(d)/L(d-) dm2 mice. In F(1)(dxb) mice, the K(d)-, D(d)-, and K(b)-restricted CTL responses to HBsAg were strikingly suppressed in the presence but efficiently elicited in the absence of L(d)/S(28-39)-specific CTL. Once primed, the K(d)- and D(d)-restricted CTL responses to HBsAg were resistant to suppression by immunodominant L(d)/S(28-39)-specific CTL. The L(d)-restricted immunodominant CTL reactivity to HBsAg can thus suppress priming to multiple alternative epitopes of HBsAg, independent of the processing pathway that generates the epitope, of the background of the mouse strain used, and of the presence/absence of different allelic variants of the K and D MHC class I molecules.  相似文献   

15.
Cytotoxic T lymphocytes (CTLs) are proposed to be critical for protection from intracellular pathogens such as Ebola virus. However, there have been no demonstrations that protection against Ebola virus is mediated by Ebola virus-specific CTLs. Here, we report that C57BL/6 mice vaccinated with Venezuelan equine encephalitis virus replicons encoding the Ebola virus nucleoprotein (NP) survived lethal challenge with Ebola virus. Vaccination induced both antibodies to the NP and a major histocompatibility complex class I-restricted CTL response to an 11-amino-acid sequence in the amino-terminal portion of the Ebola virus NP. Passive transfer of polyclonal NP-specific antiserum did not protect recipient mice. In contrast, adoptive transfer of CTLs specific for the Ebola virus NP protected unvaccinated mice from lethal Ebola virus challenge. The protective CTLs were CD8(+), restricted to the D(b) class I molecule, and recognized an epitope within amino acids 43 to 53 (VYQVNNLEEIC) in the Ebola virus NP. The demonstration that CTLs can prevent lethal Ebola virus infection affects vaccine development in that protective cellular immune responses may be required for optimal protection from Ebola virus.  相似文献   

16.
Abstract

Liposomal hepatitis B vaccine was prepared by encapsulating recombinant 22-nm hepatitis B surface antigen (HBsAg) particles derived from a Chinese hamster ovary (CHO) cell line in multilammelar lipid vesicles (MLV) composed of 9:1 dimyristoyl phosphatidyl-choline/dimyristoyl phosphatidylglycerol. The CHO-derived HBsAg particles reveal 6 bands in polyacrylamide gel electrophoresis related to the presence of 3 peptides (S, M, & L). Four different methods were used to prepare the MLV vaccine, each resulting in freeze-dried powder which upon hydration gave MLV of a similar mean size, 4.5 μm. The humoral response to these 4 liposomal vaccines in mice was dependent on the method of preparation, but for all of them it was better than the response to alum-based vaccine (especially at a low dose of antigen). Comparison of vaccination using “naked” HBsAg particles, particles adsorbed to alum, and particles encapsulated in liposomes demonstrated that at low dose of antigen the liposomal vaccine was superior in eliciting humoral response. Encapsulation in liposomes did not improve specific cytotoxic T lymphocyte (CTL) response. The alum in the vaccine completely eliminates CTL response, though it improved the humoral response by increasing the linear range in the antigen dose-response curve (increasing the antibody titer at high antigen dose). A similar response profile was obtained with recombinant yeast (Hansenula) 22-nm particles composed of a single non-glycosylated (p24) peptide and lipids. The similarity in the response to the mammalian cell and yeast derived vaccine suggests that the physical nature of the vaccine, more than the exact composition, determines the balance between humoral and CTL responses.  相似文献   

17.
Intramuscular injection of BALB/c mice with a DNA plasmid encoding nucleoprotein (NP) from influenza virus A/PR/8/34 (H1N1) provides cross-strain protection against lethal challenge with influenza virus A/HK/68 (H3N2). CTL specific for the H-2Kd-restricted epitope NP147-155 are present in these mice and are thought to play a role in the protection. To assess the effectiveness of NP DNA immunization in comparison with influenza virus infection in the induction of CTL responses, we monitored the frequency of CTL precursors (CTLp) in mice following i.m. injection with NP DNA or intranasal infection with influenza virus and showed that the CTLp frequency in NP DNA-immunized mice can reach levels found in mice that had been infected with influenza virus. We also measured the CTLp frequency, anti-NP Ab titers, and T cell proliferative responses in mice that were injected with titrated dosages of NP DNA and documented a correlation of the CTLp frequency and the Ab titers, but not proliferative responses, with the injection dose. Furthermore, we observed a positive correlation between the frequency of NP147-155 epitope-specific CTLp and the extent of protective immunity against cross-strain influenza challenge induced by NP DNA injection. Collectively, these results and our early observations from adoptive transfer experiments of in vitro activated lymphocytes from NP DNA-immunized mice suggest a protective function of NP-specific CTLp in mice against cross-strain influenza virus challenge.  相似文献   

18.
The antibody-inducing properties of a bacterial/viral bivalent DNA vaccine (pRECFA), expressing a peptide composed of N- and C-terminal amino acid sequences of the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) fused with an inner segment encoding the major structural subunit of enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae (CFA/I), was evaluated in BALB/c mice following intramuscular immunization. The bivalent pRECFA vaccine elicited serum antibody responses, belonging mainly to the IgG2a subclass, against both CFA/I and HSV gD proteins. pRECFA-elicited antibody responses cross-reacted with homologous and heterologous ETEC fimbrial antigens as well as with type 1 and type 2 HSV gD proteins, which could bind and inactivate intact HSV-2 particles. On the other hand, CFA/I-specific antibodies could bind but did not neutralize the adhesive functions of the bacterial CFA/I fimbriae. In spite of the functional restriction of the antibodies targeting the bacterial antigen, the present evidence suggests that fusion of heterologous peptides to the HSV gD protein represents an alternative for the design of bivalent DNA vaccines able to elicit serum antibody responses.  相似文献   

19.
Seasonal influenza epidemics recur due to antigenic drift of envelope glycoprotein antigens and immune evasion of circulating viruses. Additionally, antigenic shift can lead to influenza pandemics. Thus, a universal vaccine that protects against multiple influenza virus strains could alleviate the continuing impact of this virus on human health. In mice, accelerated clearance of a new viral strain (cross-protection) can be elicited by prior infection (heterosubtypic immunity) or by immunization with the highly conserved internal nucleoprotein (NP). Both heterosubtypic immunity and NP-immune protection require antibody production. Here, we show that systemic immunization with NP readily accelerated clearance of a 2009 pandemic H1N1 influenza virus isolate in an antibody-dependent manner. However, human immunization with trivalent inactivated influenza virus vaccine (TIV) only rarely and modestly boosted existing levels of anti-NP IgG. Similar results were observed in mice, although the reaction could be enhanced with adjuvants, by adjusting the stoichiometry among NP and other vaccine components, and by increasing the interval between TIV prime and boost. Importantly, mouse heterosubtypic immunity that had waned over several months could be enhanced by injecting purified anti-NP IgG or by boosting with NP protein, correlating with a long-lived increase in anti-NP antibody titers. Thus, current immunization strategies poorly induce NP-immune antibody that is nonetheless capable of contributing to long-lived cross-protection. The high conservation of NP antigen and the known longevity of antibody responses suggest that the antiviral activity of anti-NP IgG may provide a critically needed component of a universal influenza vaccine.  相似文献   

20.
The hepatitis B virus (HBV) transgenic mouse (Tg) 50-4 strain is immunologically tolerant to HBV antigens. Various vaccination strategies have been attempted but failed to break the tolerance in the mouse. Although the tolerance to HBV antigen is maintained, this mouse strain develops spontaneous liver disease beginning at the age of about 3 months. We attempted to induce immune responses to HBV surface antigen (HBsAg) in the Tg by immunization with recombinant vaccinia virus expressing HBsAg (vvHBV), and observed different immunological responsiveness between 2-month-old and 5-month-old Tg. In contrast to the unbreakable tolerance reported previously, we could induce both the cytotoxic T lymphocyte (CTL) and the antibody response against HBsAg by the vvHBV immunization. The cytokine expression pattern indicated that T helper 1 type immune response was induced. However, interestingly, these immune responses were observed only in the 5-month-old Tg, but not in the 2-month-old Tg. Furthermore, CD4+ T cells from 2-month-old mice, but not those from 5-month-old mice, inhibited CTL response to HBV antigen when adoptively transferred to C57BL/6. These results suggest the possible involvement of regulatory T cell function in the HBV Tg for maintaining tolerance. This study would contribute to a better understanding of immune status of the HBV Tg as a model of human chronic hepatitis and to the search for new therapeutic targets for chronic viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号