首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catecholamine treatment of isolated rat adipocytes decreases insulin binding and inhibits insulin stimulation of the glucose-transport system. There is increasing evidence that the insulin signal is transmitted after insulin is bound to the receptor via a tyrosine kinase, which is an intrinsic part of the receptor. To find whether the receptor kinase is modified by catecholamines, we solubilized and partially purified the insulin receptor of isoprenaline-treated adipocytes and studied the effect of insulin on its kinase activity. (1) Insulin increased the tyrosine autophosphorylation of the insulin receptor kinase from catecholamine-treated cells only 4-fold, compared with a 12-fold stimulation in control cells. (2) The rate of insulin-stimulated 32P incorporation into the receptor of isoprenaline-treated cells at non-saturating [32P]ATP concentrations (5 muM) was decreased to 5-8% of the values for receptor from control cells. (3) 125I-insulin binding to the partially purified receptor from catecholamine-treated cells was also markedly decreased. The insulin receptor from catecholamine treated cells bound 25-50% of the amount of insulin bound by the receptor from control cells at insulin concentrations of 10 pM-0.1 muM. Part of the impaired insulin-responsiveness of the receptor kinase of catecholamine-treated cells is therefore explained by impaired binding properties; however, an additional inhibition of the kinase activity of the insulin receptor from catecholamine-treated cells is evident. (4) This inhibition of kinase activity decreased when the concentration of [gamma-32P]ATP in the phosphorylation assay was increased. A Lineweaver-Burk analysis revealed that the Km for ATP of the receptor kinase from isoprenaline-treated cells was increased to approx. 100 muM, compared with approx. 25 muM for receptor of control cells. (5) We conclude from the data that catecholamine treatment of rat adipocytes modulates the kinase activity of the insulin receptor by increasing its Km for ATP and that this is part of the mechanism leading to insulin-resistance in these cells.  相似文献   

2.
Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to internalization of the hormone-receptor complex. In contrast, adipocytes from pregnant and lactating rats did not exhibit this 'down-regulation' phenomenon. Down regulation was, however, apparent in all groups when the experiments were performed in Tris buffer (where receptor recycling is inhibited), suggesting that in pregnant and lactating rats insulin receptors are rapidly recycled back to the plasma membrane, whereas in virgin rats this recycling process is less effective. Internalization of insulin was also determined by using 125I-labelled insulin. Adipocytes from pregnant and lactating rats appeared to internalize similar amounts of insulin to virgin rats. In the presence of the lysosomal inhibitor chloroquine, adipocytes from pregnant rats internalized more insulin than virgin or lactating rats. These results suggest that adipocytes from pregnant and lactating rats internalize insulin and its receptor normally, whereas intracellular processing of the insulin receptor may differ from that in virgin rats. In addition the rate of lysosomal degradation of insulin may be altered in adipocytes from pregnant rats.  相似文献   

3.
《The Journal of cell biology》1994,126(5):1267-1276
Lipoprotein lipase (LPL) and glycolipid-anchored cAMP-binding ectoprotein (Gce1) are modified by glycosyl-phosphatidylinositol (GPI) in rat adipocytes, however, the linkage is potentially unstable. Incubation of the cells with either insulin (0.1-30 nM) or the sulfonylurea, glimepiride (0.5-20 microM), in the presence of glucose led to conversion of up to 35 and 20%, respectively, of the total amphiphilic LPL and Gce1 to their hydrophilic versions. Inositol- phosphate was retained in the residual protein-linked anchor structure. This suggests cleavage of the GPI anchors by an endogenous GPI-specific insulin- and glimepiride-inducible phospholipase (GPI-PL). Despite cleavage, hydrophilic LPL and Gce1 remained membrane associated and were released only if a competitor, e.g., inositol- (cyclic)monophosphate, had been added. Other constituents of the GPI anchor (glucosamine and mannose) were less efficient. This suggests peripheral interaction of lipolytically cleaved LPL and Gce1 with the adipocyte cell surface involving the terminal inositol- (cyclic)monophosphate epitope and presumably a receptor of the adipocyte plasma membrane. In rat adipocytes which were resistant toward glucose transport stimulation by insulin, the sensitivity and responsiveness of GPI-PL to stimulation by insulin was drastically reduced. In contrast, activation of both GPI-PL and glucose transport by the sulfonylurea, glimepiride, was not affected significantly. Inhibition of glucose transport or incubation of rat adipocytes in glucose-free medium completely abolished stimulation of GPI-PL by either insulin or glimepiride. The activation was partially restored by the addition of glucose or nonmetabolizable 2-deoxyglucose. These data suggest that increased glucose transport stimulates a GPI-PL in rat adipocytes.  相似文献   

4.
A number of vanadium compounds (vanadate, vanadyl sulfate, metavanadate) have insulin-mimicking actions bothin vitro andin vivo. They have multiple biological effects in cultured cells and interact directly with various enzymes. The inhibitory action on phosphoprotein tyrosine phosphatases (PTPs) and enhancement of cellular tyrosine phosphorylation appear to be the most relevant to explain the ability to mimic insulin. We demonstrated that in rat adipocytes both acute insulin effects, e.g. stimulation of IGF-II and transferrin binding and a chronic effect, insulin receptor downregulation, were stimulated by vanadate. Vanadate also enhanced insulin binding, particularly at very low insulin concentrations, associated with increased receptor affinity. This resulted in increased adipocyte insulin sensitivity. Finally vanadate augmented the extent of activation of the insulin receptor kinase by submaximal insulin concentrations. This was associated with a prolongation of the insulin biological response, lipogenesis, after removal of hormone.In conclusion: in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.  相似文献   

5.
Previous studies have proposed that insulin increases the binding of insulin-like growth factor II (IGF-II) in isolated rat adipose cells at 24 degrees C by increasing receptor affinity (Ka). This study re-examines these observations under conditions in which receptor-ligand internalization is blocked by 1 mM KCN. In the absence of KCN, adipose cells bind 0.71 amol of IGF-II/cell with low apparent affinity (0.030 nM-1), of which greater than 75% is not accessible to trypsin. In contrast, in the presence of KCN, IGF-II binding is decreased by 95% and its apparent affinity increased to 0.21 nM-1. Moreover, greater than 60% of the bound IGF-II now is sensitive to trypsin. In either the absence or presence of KCN, approximately 20% of the cell's total IGF-II receptors are present in the plasma membranes and approximately 80% in the low density microsomes. Insulin induces a 5-fold increase in cell surface IGF-II receptors without a change in affinity when IGF-II binding is measured in the presence of KCN. Similarly, insulin increases IGF-II receptor concentration in the plasma membranes and concomitantly decreases that in the low density microsomes. Receptor affinity in these two subcellular membrane fractions is not affected by incubation of intact cells with either insulin or KCN and is similar to that observed in intact cells in the presence of KCN. Addition of KCN prior to insulin abolishes all of these effects of insulin. These data suggest that (a) the effects of KCN reflect a selective blockade of endocytosis; (b) in the absence of KCN, IGF-II binds to receptors of constant affinity that cycle between the plasma membrane and an intracellular pool resulting in an accumulation of intracellular IGF-II; (c) insulin induces an increase in IGF-II binding by causing a steady state redistribution of receptors from this intracellular pool to the plasma membrane; and (d) this redistribution in the intact cell can only be detected using Scatchard analysis when recycling of the receptors is prevented by KCN.  相似文献   

6.
The effect of alterations to the insulin receptor on the insulin sensitivity of isolated adipocytes was studied. Receptor changes were induced by treatment of adipocytes with either phospholipase C or trypsin. After enzyme treatment, binding of insulin to insulin receptors and insulin-mediated glucose metabolism were examined. Exposure of adipocytes to phospholipase C (2 units/ml) significantly increased insulin binding to the cells, but destroyed the ability of the cells to oxidize glucose. After treatment with trypsin (500 micrograms/ml) for 5 min, insulin binding to the adipocytes was significantly increased. This was shown to be due to an increase in insulin-receptor affinity. Metabolic studies showed that trypsin treatment led to an increase in basal glucose transport but markedly decreased the response to insulin at all concentrations tested. Adipocytes treated with trypsin showed no significant difference in basal glucose oxidation rates when compared with controls, but were less sensitive to insulin at low insulin concentrations, and showed a decreased maximum response at high insulin concentrations. In conclusion, these findings indicate a dissociation between induced changes in binding of insulin to insulin receptors and subsequent hormone action. The importance of post-receptor events in the biological action of insulin is highlighted.  相似文献   

7.
The actions of insulin, vanadate (V) and hydrogen peroxide (H2O2) on IGF-II binding and insulin receptor tyrosine kinase activity were studied in rat adipocytes. Incubating adipocytes with a combination of V plus H2O2 resulted in a potent synergistic effect on both the increase in IGF-II binding and the activation of the insulin receptor kinase. Catalase, which removes H2O2, abolished this synergism if added at the time of mixing of V plus H2O2 but not if added 10 min. later, suggesting that the formation of peroxide(s) of vanadate generated a potent insulin mimicker. The data support a critical role for the insulin receptor kinase in insulin action. The novel insulin-mimetic compound, a presumed peroxide of vanadate, could prove useful for investigating insulin action and may be valuable for treating insulin resistance.  相似文献   

8.
The in vitro effect of glucocorticoid on insulin binding and glucose transport was studied with rat adipocytes. Isolated rat adipocytes were incubated with or without 0.70 microgram/ml (1.9 mumol) of hydrocortisone in TCM 199 medium at 37 degrees C, 5% CO2/95% air (v/v), pH 7.4, for 2, 4, and 8 h, and then fat cell insulin binding and insulin-stimulated 3-O-methylglucose transport were measured. Hydrocortisone did not affect insulin binding in terms of affinity or receptor number. Glucose transport in the absence of insulin was significantly decreased at the incubation time of 2 h and continued to decrease up to 8 h of incubation with hydrocortisone. Decreased insulin sensitivity of glucose transport (i.e., a right-ward shift of the dose response curve) was also demonstrated after 2 h incubation with hydrocortisone, and the ED50 of insulin was maximally increased at 4 h of incubation (0.53 ng/ml for treated vs. 0.22 ng/ml for control cells). Maximal insulin responsiveness was also significantly decreased in treated cells after 8 h incubation with hydrocortisone. When percent maximum glucose transport was expressed relative to receptor-bound insulin, the ED50 values of treated and control cells were 10.5 and 7.2 pg of bound insulin, per 2 X 10(5) cells, respectively. Thus, it was evident that glucocorticoid induced a post-receptor coupling defect in the signal transmission of insulin-receptor complex.  相似文献   

9.
Incubation of insulin-treated rat adipocytes with chloroquine, in a time- and concentration-dependent manner, was observed to inhibit the insulin-stimulated increase in insulin-like growth factor II (IGF-II) binding activity, whereas no significant change in IGF-II binding was observed in the absence of insulin. The incremental increase of insulin-stimulated IGF-II binding was inhibited 50% by 0.2 mM chloroquine within 15 min and was nearly completely abolished by 60 min. Interestingly, IGF-II binding was never observed to decrease below the binding value in cells without insulin treatment even when incubation was extended to 180 min. Scatchard analysis of IGF-II binding as well as the specific binding of an anti-IGF-II receptor antibody demonstrated that the loss of IGF-II binding in the insulin-stimulated chloroquine-treated adipocytes was due to a decrease in the number of cell-surface IGF-II receptors, whereas the total number of cellular IGF-II receptors was unaltered. The effect of chloroquine was observed to be reversible, temperature-dependent, and sensitive to the metabolic poison KCN. Furthermore, NH4Cl was also observed to inhibit insulin-stimulated increase in IGF-II binding. In contrast, chloroquine or NH4Cl did not inhibit the basal or insulin-stimulated glucose transport activity. Photoaffinity labeling of the glucose transporter with [3H]cytochalasin B also demonstrated that the basal and insulin-stimulated subcellular distribution of the glucose transporters was unaltered by chloroquine treatment. These results suggest that 1) insulin induces a constitutive, acidotropic agent-sensitive recycling of IGF-II receptor and 2) the glucose transporter and IGF-II receptor do not share the same insulin-regulated intracellular trafficking pathways.  相似文献   

10.
The receptor binding and biological potency of despentapeptide insulin (DPI) was assessed in human adipocytes, rat adipocytes and rat hepatocytes. DPI displayed a lower affinity for binding to both human adipocytes (half-maximum displacement at 0.89 +/- 0.04 and 0.20 +/- 0.02 nmol/l for DPI and insulin respectively; P less than 0.001) and rat adipocytes (half-maximum displacement at 7.12 +/- 1.06 and 1.14 +/- 0.18 nmol/l respectively, P less than 0.05). However, although DPI was less potent than unmodified insulin in stimulating glucose uptake in rat adipocytes (half-maximal stimulation at 2.0 +/- 0.67 and 0.47 +/- 0.18 nmol/l respectively; P less than 0.05), DPI was equipotent with insulin in human adipocytes (half-maximal stimulation at 0.034 +/- 0.001 and 0.027 +/- 0.001 nmol/l respectively; P greater than 0.2). In rat hepatocytes, DPI was twofold less potent in binding displacement activity (half-maximum displacement at 3.8 +/- 0.9 and 1.7 +/- 0.3 nmol/l respectively; P less than 0.01) but appeared to be equivalent in stimulating amino butyric acid uptake (half-maximum stimulation at 0.98 +/- 0.12 and 0.95 +/- 0.26 nmol/l respectively). The difference in affinity of DPI binding to rat liver membranes was less marked (1.3 fold decreased compared with insulin: 5.3 +/- 0.7 and 4.2 +/- 0.6 nmol/l respectively; P less than 0.001). Thus, the decreased receptor affinity of DPI was reflected in decreased biological potency in rat adipocytes, but not in human adipocytes nor rat hepatocytes. These data suggest differences in the binding-action linking in the cells of different tissues and different species.  相似文献   

11.
The effects of a short term (2 hour) incubation of 5 microM triiodothyronine (T3) on 125I-insulin binding and insulin stimulated (14C)-2-deoxy-D-glucose uptake in rat adipocytes was investigated. In the presence of 5 microM T3, (14C)-2-deoxy-D-glucose uptake was significantly decreased by 11 to 24% at insulin concentrations of 5 to 1000 microU/ml. The concentration of insulin eliciting a half maximal response for insulin stimulated (14C)-2-deoxy-D-glucose uptake was 11.5 microU/ml in the control, and 14.3 microU/ml in the T3 treated cells (p less than 0.01). T3 treated adipocytes bound 9 to 22% less 125I-labeled insulin yet the concentration of native insulin necessary to displace 50% of the bound 125I-labeled insulin was the same in the control and T3 treated cells (75 and 70 ng/ml, respectively). These studies indicate that the decreased sensitivity of T3 treated cells to insulin is in accordance with a decreased number of receptors with the same binding characteristics as those of the control cells. The decreased maximal uptake of (14C)-2-deoxy-D-glucose at saturating insulin levels is likely to be independent of receptor number and result from a second, undetermined alteration in the hexose transport system of adipocytes treated with T3.  相似文献   

12.
Spingosine, a naturally occurring inhibitor of protein kinase C, has recently been shown to have potent bioregulatory effects on a variety of cellular processes involving signal transduction mechanisms. In the present studies, we have investigated its effects on activation by insulin of hexose transport and glucose oxidation in isolated rat adipocytes. Preincubation of cells with this long-chain base blocked both the marked activation of these processes by insulin and the smaller activation by phorbol myristate acetate. Inhibition of both insulin and phorbol 12-myristate 13-acetate activation showed the same sphingosine concentration dependence, suggesting a common locus of action. The effectiveness of sphingosine was inversely proportional to the lipid content in the incubation (which was a function of both the age of the animal and the number of cells used) presumably due to dilution of the lipophilic long-chain base into the cellular triglycerides. Sphingosine did not affect either insulin binding to its receptor or the half-maximal concentration of the hormone required to activate hexose transport, but reduced the maximal responses. Thus, the inhibition was at a step distal to the binding of insulin to its receptor. Basal transport activity was not inhibited, suggesting a locus of action prior to the glucose transporter. The inhibitor was also effective when added following activation by insulin of hexose transport and resulted in a rapid reversal of activation (t 1/2 for inhibition was 2-4 min.). Sphingosine and its analogs showed a parallel potency for inhibition both of isolated protein kinase C and of insulin activation in adipocytes, consistent with an essential role for protein kinase C in the activation of hexose transport by insulin.  相似文献   

13.
Recently, we have shown that protein kinase C (PKC) activated by phorbol 12-myristate 13-acetate (PMA) attenuates the beta1-adrenergic receptor (beta1-AR)-mediated lipolysis in rat adipocytes. Stimulation of cells by insulin, angiotensin II, and alpha1-AR agonist is known to cause activation of PKC. In this study, we found that lipolysis induced by the beta1-AR agonist dobutamine is decreased and is no longer inhibited by PMA in adipocytes that have been treated with 20 nM insulin for 30 min followed by washing out insulin. Such effects on lipolysis were not found after pretreatment with angiotensin II and alpha1-AR agonists. The rate of lipolysis in the insulin-treated cells was normalized by the PKCalpha- and beta-specific inhibitor G? 6976 and PKCbeta-specific inhibitor LY 333531. In the insulin-treated cells, wortmannin increased lipolysis and recovered the lipolysis-attenuating effect of PMA. Western blot analysis revealed that insulin slightly increases membrane-bound PKCalpha, betaI, and delta, and wortmannin decreases PKCbetaI, betaII, and delta in the membrane fraction. These results indicate that stimulation of insulin receptor induces a sustained activation of PKC-dependent antilipolysis in rat adipocytes.  相似文献   

14.
The counter-regulatory effect of adenosine, isoprenaline and selected cyclic AMP analogues on insulin-stimulated 3-O-methylglucose transport and insulin binding were studied in rat fat-cells. Isoprenaline alone had no consistent effect on glucose transport in the presence of maximally effective insulin concentrations. However, it decreased insulin binding by approx. 20% and increased EC50 (concn. giving 50% of maximal stimulation) for insulin from 8 +/- 1 to 17 +/- 2 mu units/ml. Adenosine deaminase (ADA) alone only exerted a slight effect, whereas isoprenaline and ADA in combination consistently decreased the maximal effect of insulin on glucose transport, decreased insulin binding by approx. 30% and markedly decreased insulin-sensitivity (EC50 61 +/- 8 mu units/ml). In cells from pertussis-toxin-treated animals, isoprenaline alone decreased the insulin response by approx. 75%, decreased insulin binding by approx. 45% and caused a marked rightward shift in the dose-response curve for insulin (EC50 103 +/- 34 mu units/ml). The importance of cyclic AMP for these effects was evaluated with the analogue N6-monobutyryl cyclic AMP, which is resistant to hydrolysis by the phosphodiesterase. The importance of phosphodiesterase activation by insulin was studied with 8-bromo cyclic AMP, which is an excellent substrate for this enzyme. N6-Monobutyryl cyclic AMP, in contrast with 8-bromo cyclic AMP, markedly impaired insulin-sensitivity (EC50 approx. 100 mu units/ml). However, the maximal effect of insulin was only slightly attenuated. In conclusion: (1) beta-adrenergic stimulation and cyclic AMP markedly alter insulin-sensitivity, but not responsiveness, mainly through post-receptor perturbations; (2) when cyclic AMP is increased phosphodiesterase activation by insulin is a critical step to elicit insulin action; (3) adenosine modulates the insulin-antagonistic effect of beta-adrenergic stimulation via Ni (inhibitory nucleotide-binding protein) through both cyclic-AMP-dependent and -independent mechanisms.  相似文献   

15.
1. Animals made diabetic by injection of streptozotocin or animals after 3 days of fasting show decreased insulin levels and a decrease in mean cell diameter of adipocytes from epidydymal fat pads in comparison with cells from normal animals. 2. 14CO2 production from D-[U-14C]glucose is impaired in diabetic and fasted animals both in presence or in absence of a concentration of insulin stimulating 14CO2 production maximally. 3. Insulin binding is increased in adipocytes from diabetic and fasted animals due to changes in affinity. 4. Transport studies show that basal and insulin stimulated 2-deoxy[1-14C]-glucose transport is decreased in absolute terms due to a decrease in V and an increase in Km. 5. The relative stimulatory effect of insulin is impaired in adipocytes of diabetic and fasted animals. 6. A shift of the maximal effect of insulin to lower insulin levels is seen in these cells.  相似文献   

16.
Okadaic acid, a potent inhibitor of Type 1 and Type 2A protein phosphatases, was used to investigate the mechanism of insulin action on membrane-bound low Km cAMP phosphodiesterase in rat adipocytes. Upon incubation of cells with 1 microM okadaic acid for 20 min, phosphodiesterase was stimulated 3.7- to 3.9-fold. This stimulation was larger than that elicited by insulin (2.5- to 3.0-fold). Although okadaic acid enhanced the effect of insulin, the maximum effects of the two agents were not additive. When cells were pretreated with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), the level of phosphodiesterase stimulation by okadaic acid was rendered smaller, similar to that attained by insulin. In cells that had been treated with 2 mM KCN, okadaic acid (like insulin) failed to stimulate phosphodiesterase, suggesting that ATP was essential. Also, as reported previously, the effect of insulin on phosphodiesterase was reversed upon exposure of hormone-treated cells to KCN. This deactivation of previously-stimulated phosphodiesterase was blocked by okadaic acid, but not by insulin. The above KCN experiments were carried out with cells in which A-kinase activity was minimized by pretreatment with H-7. Okadaic acid mildly stimulated basal glucose transport and, at the same time, strongly inhibited the action of insulin thereon. It is suggested that insulin may stimulate phosphodiesterase by promoting its phosphorylation and that the hormonal effect may be reversed by a protein phosphatase which is sensitive to okadaic acid. The hypothetical protein kinase thought to be involved in the insulin-dependent stimulation of phosphodiesterase appears to be more H-7-resistant than A-kinase.  相似文献   

17.
Summary The binding affinity of sulphated insulin compared with unmodified, neutral insulin has been reported to be approximately four times lower in human and rat adipocytes but over twenty times lower in rat hepatocytes. In the present study the biological action of sulphated insulin was assesed in rat hepatocytes and human and rat adipocytes. To achieve half-maximal stimulation of fatty acid synthesis in rat hepatocytes about twenty one times higher concentrations of sulphated than neutral insulin were required (15.07±5.50 vs 0.71±0.34 nmol/l), this ratio being similar to the ratio of binding affinity in rat hepatocytes. In human adipocytes, half-maximal stimulation of initial rates of glucose uptake was observed at 11.6±5.1 vs 2.9±1.3 pmol/l for sulphated and neutral insulin respectively, and half-maximal inhibition of lipolysis at 31.0±13.5 vs 7.3+2.5 pmol/I respectively. These data are consistent with the four-fold lower binding affinity of sulphated insulin to human adipocytes. However, in rat adipocytes the biological potency of sulphated insulin was found to be much lower than anticipated from the binding data, half-maximal stimulation of initial rates of glucose uptake being observed at 757±299 vs 35±13 pmol/l respectively and half-maximal inhibition of lipolysis at 35.9±12.1 vs 1.5±0.5 pmol/l respectively. Thus, in rat adipocytes, approximately 22 times the concentration of sulphated insulin was required to achieve equivalent biological effect. A discrepancy between binding affinity and biological action with respect to sulphated insulin was identified in rat adipocytes but not human adipocytes nor rat hepatocytes suggesting differences in the binding-action linkage in these cells.  相似文献   

18.
The effect of interacting isolated rat adipocytes with small, unilammelar vesicles on insulin receptor internalization and processing was studied. Treatment of freshly isolated cells with vesicles containing phosphatidylcholine and phosphatidylserine followed by incubation in 35 mM Tris-containing buffer considerably reduced the chloroquine-induced increase in cell-associated 125I-insulin and significantly inhibited the time and insulin dependent loss of surface insulin receptors. The internal receptor pool, as measured by insulin binding to detergent solubilized adipocytes, was relatively smaller in vesicle-treated cells. Concomitant with a slower rate of receptor internalization, insulin-sensitive hexose uptake also demonstrated significantly slower kinetics of decreased response with time. These results support the conclusion that pretreatment of fat cells with phospholipid vesicles inhibits normal insulin receptor cycling.  相似文献   

19.
Effect of insulin on glucagon binding to rat epididymal adipocytes was studied in vitro. [125I]iodoglucagon binding to isolated adipocytes was increased by preincubation of the cells with insulin. Maximal increase was observed with 7 X 10(-10) M insulin. In Scatchard analysis, [125I]iodoglucagon competition data generated one binding site with a single affinity for glucagon binding in the cells pretreated with buffer alone. Pretreatment of the cells with insulin increased the affinity without changes in the number of binding sites. [125I]iodoglucagon binding to isolated adipocytes was not affected by pretreatment of the cells with luteinizing hormone, follicle-stimulating hormone, growth hormone, or with prolactin. These results suggest that insulin stimulates glucagon binding to adipocytes.  相似文献   

20.
Diets enriched in sucrose severely impair metabolic regulation and are associated with obesity, insulin resistance and glucose intolerance. In the current study, we investigated the effect of 4 weeks high-sucrose diet (HSD) feeding in C57BL6/J mice, with specific focus on adipocyte function. Mice fed HSD had slightly increased adipose tissue mass but displayed similar hepatic triglycerides, glucose and insulin levels, and glucose clearance capacity as chow-fed mice. Interestingly, we found adipose depot-specific differences, where both the non- and insulin-stimulated glucose transports were markedly impaired in primary adipocytes isolated from the inguinal fat depot from HSD-fed mice. This was accompanied by decreased protein levels of both GLUT4 and AS160. A similar but much less pronounced trend was observed in the retroperitoneal depot. In contrast, both GLUT4 expression and insulin-stimulated glucose uptake were preserved in adipocytes isolated from epididymal adipose tissue with HSD. Further, we found a slight shift in cell size distribution towards larger cells with HSD and a significant decrease of ACC and PGC-1α expression in the inguinal adipose tissue depot. Moreover, fructose alone was sufficient to decrease GLUT4 expression in cultured, mature adipocytes.Altogether, we demonstrate that short-term HSD feeding has deleterious impact on insulin response and glucose transport in the inguinal adipose tissue depot, specifically. These changes occur before the onset of systemic glucose dysmetabolism and therefore could provide a mechanistic link to overall impaired energy metabolism reported after prolonged HSD feeding, alone or in combination with HFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号