首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R O'Rahilly  F Müller 《Teratology》1989,40(5):409-421
Anomalies that involve the median plane are heterogeneous, and their embryological basis varies widely. Cyclopia and symmelia present a number of similarities: 1) They would appear to arise by neither fusion nor merging but mainly through a failure in lateralization. 2) Mesenchymal deficiency is important in both: possibly disturbance of the prechordal plate in cyclopia and failure of the caudal eminence in symmelia. The caudal eminence is an important developmental feature that is only recently becoming clearer in the human embryo. 3) Disturbance of axial material seems to be essential in both. 4) The results of experimental teratogenesis and an analysis of normal human development confirm that these conditions arise early. The teratogenetic termination-periods in the human are probably 2 1/2 weeks for cyclopia sensu stricto (a median eye in a single orbit) and 3 weeks for cyclopia sensu lato, i.e., synophthalmia (paired ocular structures in a single orbit); 2 1/2 weeks for symmelia of the upper limbs (e.g., in cephalothoracopagus) and 3 1/2 weeks for symmelia of the lower limbs in a single individual. It is pointed out that in symmelia the limb buds, upper or lower, have failed to separate at their postaxial margins. This is in contrast to dimelia, in which the preaxial borders are missing and the postaxial margins are duplicated (postaxial dominance).  相似文献   

2.
Mesoderm formation in the presumptive trunk organizer was analyzed in gastrulae of Cynops pyrrhogaster. The presumptive trunk organizer showed little or no mesodermal differentiation in the beginning gastrula (0 h embryo). But as soon as the presumptive trunk organizer came into contact with the newly invaginated cranial archenteron roof, it rapidly formed mesoderm. This suggests that this differentiation was brought about by an inductive effect of the underlying cranial archenteron roof. For investigation of this possibility, the presumptive trunk organizer of 0 h embryos (Tr-0) and the newly invaginated cranial archenteron roof (presumptive pharyngeal endoderm and prechordal plate) of successive stages were cultured in isolation and by the sandwich technique. The newly invaginated presumptive pharyngeal endoderm and prechordal plate had no effect on mesoderm formation of the presumptive trunk organizer, and mesodermal differentiation of the combinations was similar to that of the Tr-0 alone. On the other hand, results showed that the prechordal plate, which came into contact with the still uninvaginated presumptive trunk organizer, stimulated dorsalisation of the weakly mesodermized trunk organizer. Based on these results, the stepwise process of mesoderm formation in the trunk organizer is discussed.  相似文献   

3.
In humans, holoprosencephaly (HPE) is a common birth defect characterized by the absence of midline cells from brain, facial, and oral structures. To understand the pathoetiology of HPE, we investigated the involvement of mammalian prechordal plate (PrCP) cells in HPE pathogenesis and the requirement of the secreted protein sonic hedgehog (Shh) in PrCP development. We show using rat PrCP lesion experiments and DiI labeling that PrCP cells are essential for midline development of the forebrain, foregut endoderm, and ventral cranial mesoderm in mammals. We demonstrate that PrCP cells do not develop into ventral cranial mesoderm in Shh−/− embryos. Using Shh−/− and chimeric embryos we show that Shh signal is required for the maintenance of PrCP cells in a non-cell autonomous manner. In addition, the hedgehog (HH)-responding cells that normally appear during PrCP development to contribute to midline tissues, do not develop in the absence of Shh signaling. This suggests that Shh protein secreted from PrCP cells induces the differentiation of HH-responding cells into midline cells. In the present study, we show that the maintenance of a viable population of PrCP cells by Shh signal is an essential process in development of the midline of the brain and craniofacial structures. These findings provide new insight into the mechanism underlying HPE pathoetiology during dynamic brain and craniofacial morphogenesis.  相似文献   

4.
Holoprosencephalic synophthalmia (cyclopia) in an 8 week fetus   总被引:1,自引:0,他引:1  
Histopathological examination of an 8-week-old human cyclopic fetus revealed holoprosencephaly, synophthalmia, and malformed midfacial features. The telencephalon was undivided and projected a single median optic stalk partially subdivided into optic vesicles contained in a single orbit. Aberrant midfacial ossification underlay arrhinia and uncleft lips and palate. Maxillary anodontia and mandibular hypodontia prevailed. Postcranial normality was disturbed by pedal postaxial hexadactyly, suggesting trisomy 13. The exceptionally young age of the specimen distinguishes its detailed analysis from the majority of older cyclopic specimens previously reported.  相似文献   

5.
6.
In order to determine the localization and volume of the prechordal lamina derivatives the initial stages of histogenesis of the cephalic gut epithelium lining were studied in embryos of chickens and mammals (rabbits, rats, mice) in early terms of the formation of the fore-part of their digestive tube. It has been established that the derivatives characteristics of the prechordal lamina such as the cephalic end of the chordal, larval mesodermal somites, are formed by the real enterocelic means only from the entodermal epithelium of the Seessel's pouch walls which is the most cranial end of the cephalic gut. In other parts of the dorsal wall of the pharynx, the more of the oesophagus, the prechordal lamina derivatives fail to be determined. This fact shows that the localization of the prechordal lamina coincides with the disposition of the Seessel's pouch lining, the histological nature of its material being identical to the entoderm.  相似文献   

7.
8.
In this article we report the isolation of a novel zebrafish gene, pitx3, which plays an important role in the formation of several placode-derived structures. In wildtype embryos, pitx3 is first expressed in a crescent-shaped area in the anterior end of the embryo. At later stages, the primordia of the anterior pituitary, the lens, the olfactory sensory epithelium, and cranial ganglia express this gene. Pitx3 is not expressed in the more posterior preplacodal region that gives rise to the epibranchial, otic, and lateral line placodes. The dynamics of pitx3 in the anterior region of wildtype embryos suggests that pitx3 expression marks a common step in the formation of the pituitary, lens, olfactory placode as well as the trigeminal placode. Analysis of pitx3 expression in mutants lacking the hedgehog or nodal function demonstrates the differential dependence of pitx3 expression in these structures on nodal and hedgehog signaling. While the lens and trigeminal placodes express pitx3 in the absence of hedgehog and nodal signaling, there is no expression of pitx3 in the anteriormost ectoderm adjacent to the neural plate from which the anterior pituitary would derive. In mutants with impaired hedgehog signaling, the lens placode frequently extends into more anterior ventral regions of the embryo.  相似文献   

9.
The prechordal cranium, or the anterior half of the neurocranial base, is a key structure for understanding the development and evolution of the vertebrate cranium, but its embryonic configuration is not well understood. It arises initially as a pair of cartilaginous rods, the trabeculae, which have been thought to fuse later into a single central stem called the trabecula communis (TC). Involvement of another element, the intertrabecula, has also been suggested to occur rostral to the trabecular rods and form the medial region of the prechordal cranium. Here, we examined the origin of the avian prechordal cranium, especially the TC, by observing the craniogenic and precraniogenic stages of chicken embryos using molecular markers, and by focal labeling of the ectomesenchyme forming the prechordal cranium. Subsequent to formation of the paired trabeculae, a cartilaginous mass appeared at the midline to connect their anterior ends. During this midline cartilage formation, we did not observe any progressive medial expansion of the trabeculae. The cartilages consisted of premandibular ectomesenchyme derived from the cranial neural crest. This was further divided anteroposteriorly into two portions, derived from two neural crest cell streams rostral and caudal to the optic vesicle, called preoptic and postoptic neural crest cells, respectively. Fate-mapping analysis elucidated that the postoptic neural crest cells were distributed exclusively in the lateroposterior part of the prechordal cranium corresponding to the trabeculae, whereas the preoptic stream of cells occupied the middle anterior part, differentiating into a cartilage mass corresponding to the intertrabecula. These results suggest that the central stem of the prechordal cranium of gnathostomes is composed of two kinds of distinct cartilaginous modules: a pair of trabeculae and a median intertrabecula, each derived from neural crest cells populating distinct places of the craniofacial primordia through specific migratory pathways.  相似文献   

10.
The disease holoprosencephaly is the basis of the most common structural anomaly of the developing forebrain in humans. Numerous teratogens when administered during early gastrulation, have been associated with this condition. Recent studies have characterized molecules expressed in the prechordal plate which are critical for normal brain formation. Perturbation of signaling pathways involving these molecules have been shown to cause holoprosencephaly in humans and other organisms.  相似文献   

11.
The 90 kDa ribosomal S6 serine/threonine kinase 2 gene (RSK2, U08316) has been recently identified as a disease-causing gene in an X-linked disorder, the Coffin-Lowry Syndrome (MIM 303600) characterized by severe mental retardation, facial dysmorphisms and progressive skeletal malformations. To investigate its possible role in cerebral cortex development, we performed RNA in situ hybridization at three stages of human development: day 32 (Carnegie 15), 9 weeks (Carnegie 23) and 13 weeks. RSK2 expression is detected in the embryonic anterior and posterior telencephalon (hippocampus anlagen), mesencephalon, rhombencephalon and cerebellum. RSK2 gene expression is also observed in dorsal root ganglia, cranial nerve ganglia, and sensory epithelium of the inner ear, liver, lung and jaw anlagen. This pattern of expression may be involved in cognitive impairment and facial dysmorphisms found in Coffin-Lowry Syndrome.  相似文献   

12.
Growth and Differentiation Factor 1 (GDF-1) has been implicated in left-right patterning of the mouse embryo but has no other known function. Here, we demonstrate a genetic interaction between Gdf1 and Nodal during anterior axis development. Gdf1-/-;Nodal+/- mutants displayed several abnormalities that were not present in either Gdf1-/- or Nodal+/- single mutants, including absence of notochord and prechordal plate, and malformation of the foregut; organizing centers implicated in the development of the anterior head and branchial arches, respectively. Consistent with these deficits, Gdf1-/-;Nodal+/- mutant embryos displayed a number of axial midline abnormalities, including holoprosencephaly, anterior head truncation, cleft lip, fused nasal cavity, and lack of jaws and tongue. The absence of these defects in single mutants indicated a synergistic interaction between Nodal and GDF-1 in the node, from which the axial mesendoderm that gives rise to the notochord, prechordal plate, and foregut endoderm originates, and where the two factors are co-expressed. This notion was supported by a severe downregulation of FoxA2 and goosecoid in the anterior primitive streak of double mutant embryos. Unlike that in the lateral plate mesoderm, Nodal expression in the node was independent of GDF-1, indicating that both factors act in parallel to control the development of mesendodermal precursors. Receptor reconstitution experiments indicated that GDF-1, like Nodal, can signal through the type I receptors ALK4 and ALK7. However, analysis of compound mutants indicated that ALK4, but not ALK7, was responsible for the effects of GDF-1 and Nodal during anterior axis development. These results indicate that GDF-1 and Nodal converge on ALK4 in the anterior primitive streak to control the formation of organizing centers that are necessary for normal forebrain and branchial arch development.  相似文献   

13.
A secreted signaling factor, Sonic hedgehog (Shh), has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. At caudal levels of the neuraxis, Shh is secreted by the notochord and floor plate during the period that ventral cell fates are specified. At anterior prosencephalic levels that give rise to the telencephalon, however, neither the prechordal mesoderm nor the ventral neural tube expresses Shh at the time that the overt ventral character of the telencephalon becomes evident. Thus, the precise role and timing of Shh signaling relevant to the specification of ventral telencephalic identity remains unclear. By analysing neural cell differentiation in chick neural plate explants we provide evidence that neural cells acquire molecular properties characteristic of the ventral telencephalon in response to Shh signals derived from the anterior primitive streak/Hensen's node region at gastrula stages. Exposure of prospective anterior prosencephalic cells to Shh at this early stage is sufficient to initiate a temporal program of differentiation that parallels that of neurons generated normally in the medial ganglionic eminence subdivision of the ventral telencephalon.  相似文献   

14.
Sonic hedgehog (Shh) secreted from the axial signaling centers of the notochord and prechordal plate functions as a morphogen in dorsoventral patterning of the neural tube. Active Shh is uniquely cholesterol-modified and the hydrophobic nature of cholesterol suggests that it might regulate Shh spreading in the neural tube. Here, we examined the capacity of Shh lacking the cholesterol moiety (ShhN) to pattern different cell types in the telencephalon and spinal cord. In mice expressing ShhN, we detected low-level ShhN in the prechordal plate and notochord, consistent with the notion that ShhN can rapidly spread from its site of synthesis. Surprisingly, we found that low-level ShhN can elicit the generation of a full spectrum of ventral cell types in the spinal cord, whereas ventral neuronal specification and ganglionic eminence development in the Shh(N/-) telencephalon were severely impaired, suggesting that telencephalic patterning is more sensitive to alterations in local Shh concentration and spreading. In agreement, we observed induction of Shh pathway activity and expression of ventral markers at ectopic sites in the dorsal telencephalon indicative of long-range ShhN activity. Our findings indicate an essential role for the cholesterol moiety in restricting Shh dilution and deregulated spread for patterning the telencephalon. We propose that the differential effect of ShhN in patterning the spinal cord versus telencephalon may be attributed to regional differences in the maintenance of Shh expression in the ventral neuroepithelium and differences in dorsal tissue responsiveness to deregulated Shh spreading behavior.  相似文献   

15.
Cerebral midline developmental anomalies: spectrum and associated features   总被引:1,自引:0,他引:1  
Cerebral midline anomalies are defects of anatomical relationships between the two hemispheres. They include holoprosencephalies, septal and commissural agenesis. Agenesis of the olfactory tract (arhinencephalies) are often included in the spectrum of holoprosencephalies and the facial phenotype is thought to be affected and characteristic in the midline development abnormalities. This work concerns a review of the literature and personal experience in two units of Fetopathology in Paris. This study confirms the relationships between various cerebral malformations and their frequent association. However, arhinencephaly and moreover agenesis of corpus callosum should be considered as heterogeneous entities, often totally distinct and independent from the malformative process of the holoprosencephaly. In addition, if major facial anomalies such as cyclopia are almost pathognomonic for holoprosencephaly, minor malformations such as lateral facial clefts of cleft palates result from a great variety of malformative processes.  相似文献   

16.
Due to the peculiar morphology of its preotic head, lampreys have long been treated as an intermediate animal which links amphioxus and gnathostomes. To reevaluate the segmental theory of classical comparative embryology, mesodermal development was observed in embryos of a lamprey, Lampetra japonica, by scanning electron microscopy and immunohistochemistry. Signs of segmentation are visible in future postotic somites at an early neurula stage, whereas the rostral mesoderm is unsegmented and rostromedially confluent with the prechordal plate. The premandibular and mandibular mesoderm develop from the prechordal plate in a caudal to rostral direction and can be called the preaxial mesoderm as opposed to the caudally developing gastral mesoderm. With the exception of the premandibular mesoderm, the head mesodermal sheet is secondarily regionalized by the otocyst and pharyngeal pouches into the mandibular mesoderm, hyoid mesoderm, and somite 0. The head mesodermal components never develop into cephalic myotomes, but the latter develop only from postotic somites. These results show that the lamprey embryo shows a typical vertebrate phylotype and that the basic mesodermal configuration of vertebrates already existed prior to the split of agnatha-gnathostomata; lamprey does not represent an intermediate state between amphioxus and gnathostomes. Unlike interpretations of theories of head segmentation that the mesodermal segments are primarily equivalent along the axis, there is no evidence in vertebrate embryos for the presence of preotic myotomes. We conclude that mesomere-based theories of head metamerism are inappropriate and that the formulated vertebrate head should possess the distinction between primarily unsegmented head mesoderm which includes preaxial components at least in part and somites in the trunk which are shared in all the known vertebrate embryos as the vertebrate phylotype.  相似文献   

17.
Cadherins are cell adhesion molecules that play important roles in development of a variety of tissues and organs including the nervous system. In this study we analyzed expression patterns of three zebrafish classical (type I) cadherins (cadherin-1, -2, and -4) in the embryonic zebrafish cranial ganglia and lateral line system using in situ hybridization and immunohistochemical methods. All three cadherins exhibit distinct spatiotemporal patterns of expression during cranial ganglia and lateral line system development. cadherin-1 message was detected in the trigeminal and facial ganglia, in the lateral line ganglia, and in most of neuromasts in the lateral lines. Cadherin-2 mRNA and protein were expressed by the majority of the cranial ganglia and lateral line system. Both cadherins were found in embryos younger than 24 hours post fertilization as well as in 2-3-day old embryos and larvae. In contrast, cadherin-4 mRNA and protein expression was detected in embryos older than 30 hours post fertilization and limited to the trigeminal, statoacoustic, and vagal cranial ganglia, and the lateral line ganglia of older embryos and larvae.  相似文献   

18.
The study of the development of of the chondrocranium in chick embryos with unilateral (right-sided) anotia revealed the following main characteristics. 1. The median axes of the chordal and the prechordal part of the cranial base are not in a straight line but show a deviation toward the right side. The angle between the two axes has its vertex in the region of the foramen hypophyseos. 2. The metotic cartilage and the foramina of the IXth and Xth cranial nerves are normal in position. 3. The tectum synoticum develops later and to a lesser extent than normal. 4. Between the basal plate, the metotic cartilage, the occipital arch and the supracapsular cartilage a foramen is formed which, later in development, is closed by outgrowths of the metotic cartilage and the basal plate. 5. The "optic area" shows a practically normal appearance which indicates that the cartilaginous ventral wall of the lagenal capsule is of basal plate origin. 6. The pro-otic process develops practically normal and, hence, is independent of the ear capsule. 7. The quadrate cartilage and the right lower jaw are displaced ventro-posteriorward. The earliest development of the perichondral bones shows some particularities which are closely correlated with the development of the various cartilaginous structures.  相似文献   

19.
20.
In this study we investigate the roles of the organizer factors chordin and noggin, which are dedicated antagonists of the bone morphogenetic proteins (BMPs), in formation of the mammalian head. The mouse chordin and noggin genes (Chrd and Nog) are expressed in the organizer (the node) and its mesendodermal derivatives, including the prechordal plate, an organizing center for rostral development. They are also expressed at lower levels in and around the anterior neural ridge, another rostral organizing center. To elucidate roles of Chrd and Nog that are masked by the severe phenotype and early lethality of the double null, we have characterized embryos of the genotype Chrd(-/-);Nog(+/-). These animals display partially penetrant neonatal lethality, with defects restricted to the head. The variable phenotypes include cyclopia, holoprosencephaly, and rostral truncations of the brain and craniofacial skeleton. In situ hybridization reveals a loss of SHH expression and signaling by the prechordal plate, and a decrease in FGF8 expression and signaling by the anterior neural ridge at the five-somite stage. Defective Chrd(-/-);Nog(+/-) embryos exhibit reduced cell proliferation in the rostral neuroepithelium at 10 somites, followed by increased cell death 1 day later. Because these phenotypes result from reduced levels of BMP antagonists, we hypothesized that they are due to increased BMP activity. Ectopic application of BMP2 to wild-type cephalic explants results in decreased FGF8 and SHH expression in rostral tissue, suggesting that the decreased expression of FGF8 and SHH observed in vivo is due to ectopic BMP activity. Cephalic explants isolated from Chrd;Nog double mutant embryos show an increased sensitivity to ectopic BMP protein, further supporting the hypothesis that these mutants are deficient in BMP antagonism. These results indicate that the BMP antagonists chordin and noggin promote the inductive and trophic activities of rostral organizing centers in early development of the mammalian head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号