首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protoplasts were isolated from cortical cells of the elongating zone of maize (Zea mays L. cv. LG 11) roots and submitted to microelectrophoresis. Significant and transient differences in zeta potential between protoplasts from upper and lower root sides were compared with the gravireaction and the differential elongation of these roots. The maximum difference in the zeta potential was obtained between protoplasts from the upper and lower cortical cells after 90 min, exactly the time of gravipresentation for which the maximum rate of gravireaction was observed. In addition, this almost corresponded to the time for which the difference between the elongation rates of upper and lower sides of the extending zone began to increase. Consequently, the changes in the charges of the plasmalemma of the cortical cells from the growing part of roots could be more or less directly related to the root graviresponse.  相似文献   

2.
Zieschang HE  Sievers A 《Planta》1991,184(4):468-477
Roots of Phleum pratense L. were photographed during both vertical growth and gravitropic bending, and positions of anticlinal rhizodermal cell walls were digitized on the physically upper and lower flanks of the root in the curvature plane. By using B-splines, arc lengths of these positions, i.e. distances along the root surface, values of curvature, and relative elemental rates of elongation were estimated. The whole graviresponse can be divided into phases according to growth-rate values: (i) an increase of rates on the upper side of the root and a decrease on the lower side during the first 1–11/2h after the root has been moved from the vertical to a horizontal position, (ii) a transient equality of the rates on both sides, (iii) 2–3 h after the beginning of graviresponse, the growth gradient is inverted, and (iv) finally, after about 4 h, the growth rates of both flanks are approximately equal again. Curvature begins 15–20 min after horizontal placement of the root. During the first 2 h of graviresponse, plots of curvature versus arc length show one maximum value. After 2–21/2 h, two maximum values can be observed, the apical one near the root tip always keeping the same distance from the tip, the other one drifting basipetally relative to the growing tip. By evaluating photographs of high magnification, a group of six rhizodermal cells on each side of the root was identified which are the first cells showing gravitropic bending. These cells are located at the beginning of the elongation zone, enclosing the region 480–680 m from the root tip. These cells might be target cells for a signal which the statenchyma, the site of graviperception, sends to the reacting zone of gravicurvature.Abbreviations curvature - RELEL relative elemental rate of elongation A preliminary report was presented at the Meeting of the Deutsche Botanische Gesellschaft, Regensburg, 30 Sept–5 Oct 1990This work was supported by Deutsche Forschungsgemeinschaft. We thank Dr. Brigitte Buchen and Professor Zygmunt Hejnowicz (Botanisches Institut, Universität Bonn, Bonn, FRG) for critical reading of the mansucript.  相似文献   

3.
When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several steps of the root gravireaction.  相似文献   

4.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

5.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent center This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

6.
Dark-grown sunflower (Helianthus annuus L.) seedling hypocotyls (15–30 mm) were marked with two rows of lanolin-coated resin beads, and the events of the following 24 hr, in physiological darkness, were recorded on time-lapse video. Nutational movement of the hypocotyl, followed for 20–24 hr for each of 21 seedlings, was found to have a mean period of 153 ± 26 min (ca. 24 C). Displacement of each bead, with time, was measured with a microcomputer-controlled video analyzer, and relative elemental elongation rate and relative growth rate analyses were carried out to determine the spatial and temporal distribution of growth. Relative elemental elongation rates were plotted against distance and time to produce “growth landscapes.” A strongly nutating seedling showed periodic fluctuations in local growth rates that alternated between values of 0.0 hr−-1 and >0.12 hr−-1 near the hypocotyl hook. Nearer the base, maximum growth rates were lower but local periodic changes still were evident. Seedlings, in which nutation appeared during the time period analyzed, showed non-synchronous pulses of growth along the axis. With nutational development, these local growth fluctuations became synchronized along each side and phased (usually 180° out of phase) with the coordinated growth fluctuations along the opposite side. In some seedlings the changes from low to high local growth rates occur nearly simultaneously over two-thirds of the active region. In others, basipetally traveling waves of growth are suggested by the growth landscapes.  相似文献   

7.
Role of cytokinin in the regulation of root gravitropism   总被引:9,自引:0,他引:9  
Aloni R  Langhans M  Aloni E  Ullrich CI 《Planta》2004,220(1):177-182
The models explaining root gravitropism propose that the growth response of plants to gravity is regulated by asymmetric distribution of auxin (indole-3-acetic acid, IAA). Since cytokinin has a negative regulatory role in root growth, we suspected that it might function as an inhibitor of tropic root elongation during gravity response. Therefore, we examined the free-bioactive-cytokinin-dependent ARR5::GUS expression pattern in root tips of transformants of Arabidopsis thaliana (L.) Heynh., visualized high cytokinin concentrations in the root cap with specific monoclonal antibodies, and complemented the analyses by external application of cytokinin. Our findings show that mainly the statocytes of the cap produce cytokinin, which may contribute to the regulation of root gravitropism. The homogenous symmetric expression of the cytokinin-responsive promoter in vertical root caps rapidly changed within less than 30 min of gravistimulation into an asymmetrical activation pattern, visualized as a lateral, distinctly stained, concentrated spot on the new lower root side of the cap cells. This asymmetric cytokinin distribution obviously caused initiation of a downward curvature near the root apex during the early rapid phase of gravity response, by inhibiting elongation at the lower side and promoting growth at the upper side of the distal elongation zone closely behind the root cap. Exogenous cytokinin applied to vertical roots induced root bending towards the application site, confirming the suspected inhibitory effect of cytokinin in root gravitropism. Our results suggest that the early root graviresponse is controlled by cytokinin. We conclude that both cytokinin and auxin are key hormones that regulate root gravitropism.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1381-8  相似文献   

8.
A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50°) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.  相似文献   

9.
We have tested the hypothesis that wall-bound calcium is redistributed from the lower to the upper sides of horizontal stems and coleoptiles during the reaction phase of gravicurvature. We used atomic absorption spectrometry to measure wall-bound calcium in the epidermal and internal layers of sunflower (Helianthus annum L.) hypocotyls and pea (Pisum sativum L.) epicotyls, and total calcium in maize (Zea mays L.) coleoptiles at the time of maximal gravireaction. In every case, we found that there was no measurable redistribution of wall-bound calcium either from the lower to the upper sides, or between epidermal and inner tissues in response to the gravistimulus. These results indicate that a redistribution of wall-bound calcium does not play a role during the gravireaction of stems and coleoptiles.  相似文献   

10.
The pH patterns at the surfaces of both vertically growing roots of Phleum pratense L. and roots tilted by 45° were recorded using H +-sensitive microelectrodes. During vertical growth the root cap exhibited lower pH values than the meristematic zone. The highest pH values were found at the border between meristematic and elongation zones. In the apical part of the elongation zone the values strongly decreased basipetally. They reached a minimum value of pH 5.4–5.5 (medium pH of about 6.0) at a distance of 700 m from the root tip. This region of strongest acidification usually coincided with that of the highest relative rates of elongation. The region of the first visible curvature following gravistimulation was positioned at 100–200 m more apically. The pH values increased in the basal elongation zone towards the mature zone. The H+-flux pattern around a vertically growing Phleum root was characterized by high influxes in the meristematic zone and smaller effluxes in the elongation zone. Tilting the root by 45° induced changes in the pH values of the upper and lower sides of a Phleum root. At a distance of 300–500 m from the root tip, the upper side was strongly acidified while the pH of the lower side slightly increased compared with the values during vertical orientation. pH differences of up to 0.9 pH units between the two sides of a root were detected. These differences decreased basipetally and could not be measured more distant than 700–800 m from the tip. Compared with a vertically growing root, the H+-flux pattern of a Phleum root tilted by 45° exhibited effluxes on the entire upper organ flank while the pattern was scarcely altered on the lower side. The curvature-initiating zone in Phleum roots is positioned within that section of the root in which pH changes occur after tilting. The region of highest pH differences, however, is nearer to the apex of the root than the curvature-initiating zone. The pH changes began 8.2 min after a root had been tilted. The bending process started after 17.2 min, i.e. after double the time needed for differential acidification. After reorienting a root, which had just begun to bend, to its previous vertical position the inversion of the pH gradient could be measured within the same mean time of about 8 min. This is again significantly earlier than the beginning of the rebending process. The results indicate that, during the graviresponse, ionic movements occur much earlier than the changes in hormonal activities reported in the literature.Abbreviation CIZ curvature-initiating zone A preliminary report was presented at the 29th Plenary Meeting of the Committee on Space Research (COSPAR) in Washington D.C., USA, 28 Aug – 5 Sept 1992 (Zieschang and Sievers 1993)This work was supported by the Deutsche Forschungsgemeinschaft. We thank Professor H. Felle (Botanisches Institut, Universität Gießen, Gießen, FRG) for practical instructions concerning the method of H+-sensitive microelectrodes and Professor W. Simonis (Botanisches Institut, Universität Würzburg, Würzburg, FRG) for allowing to use the microelectrode amplifier.  相似文献   

11.
Using a macrophotographic technique, kinetic studies were performed on growth and gravireaction, both measured on maize (cv. LG 11) roots. When using intact roots, it was found that the growth rate decreased two hours after the beginning of the gravistimulus, the rate of root curvature being optimal at that time. These two processes are greater in light than in the dark. Subsequently, the curvature rate decreased rapidly to zero in the dark but, in light, it continued for at least a further three hours. There was then a recovery of elongation in darkness whereas in light growth rate remained low. A comparative analysis between root segments and intact roots suggests that the correlation between the growth and the gravireaction rates differs according to the system studied and that light has a greater effect on growth rate when the roots are subject to gravitational stimuli. Present data are discussed in terms of hormone balance between several endogenous regulators.  相似文献   

12.
Plant height decreases much within narrow altitudinal spans near treelines. We compared the stem age, stem inclination and shoot elongation rates of alpine dwarf pine Pinus pumila between the upper distribution limit (treeline, 2,850 m a.s.l.) and the lower distribution limit (2,500 m a.s.l.) on Mount Norikura in central Japan, to examine how the growth traits of P. pumila change with altitude. The mean stem height at the upper distribution limit (49 cm) was about a quarter of that at the lower distribution limit (187 cm). The mean ratio of stem height to length was lower at the upper distribution limit than at the lower distribution limit, indicating that P. pumila stems inclined more at the higher altitude. The mean stem age at the upper distribution limit (48 years) was less than a half of that at the lower distribution limit (109 years). Although the shoot elongation rate positively correlated with stem length at the two altitudes, the shoot elongation rate at a given stem length was lower at the upper distribution limit than at the lower distribution limit. Thus, less developed scrub at the upper distribution limit than at the lower distribution limit was due to shorter stem age, more creeping stems and lower shoot elongation rates. Generally, wind velocity is greater in higher altitudes. Probably, strong wind reduces the growth and mean stem age of P. pumila stems at the upper distribution limit. Therefore, this study concludes that the scrub height of P. pumila is controlled not only by temperature, but also by strong wind.  相似文献   

13.
P. E. Pilet  D. Ney 《Planta》1981,151(2):146-150
The growth rate of the two sides of 10-mm apical segments prepared from primary roots and of intact primary roots of maize has been analyzed in both vertical and horizontal positions, using a filming method allowing continuous growth recording. The data showed that the georeaction began by a decrease in the overall elongation rate of the roots. This inhibition is effective on the lower side of the bending zone, where the growth is practically stopped during the period of maximum rate of geocurvature. In contrast, the growth is slightly enhanced on the upper part of the elongating zone.  相似文献   

14.
Fricke W 《Planta》2004,219(3):515-525
The aim of the present study was to test whether rapid accumulation of solutes in response to salinity in leaf tissues of barley (Hordeum vulgare L.) contributes to recovery and maintenance of residual elongation growth. Addition of 100 mM NaCl to the root medium caused an immediate reduction close to zero in elongation velocity of the growing leaf 3. After 20–30 min, elongation velocity recovered suddenly, to 40–50% of the pre-stress level. Bulk osmolality increased first, after 60 min, significantly in the proximal half of the elongation zone. Over the following 3 days, osmolality increases became significant in the distal half of the elongation zone, the adjacent, enclosed non-elongation zone and finally in the emerged portion of the blade. The developmental gradient and time course in osmolality increase along the growing leaf was reflected in the pattern of solute (Cl, Na and K) accumulation in bulk tissue and epidermal cells. The partitioning of newly accumulated solutes between epidermis and bulk tissue changed with time. Even though solute accumulation does not contribute to the sudden and partial growth recovery 20–30 min after exposure to salt, it does facilitate residual growth from 1 h onwards. This is due to a high sink strength for solutes of the proximal part of the growth zone and its ability to accumulate solutes rapidly and at high rates.Abbreviations EDX analysis Energy-dispersive X-ray analysis - LEV Leaf elongation velocity - LVDT Linear variable differential transformer - REGR Relative elemental growth rate  相似文献   

15.
Relative elemental growth rates (REGR) and lengths of epidermal cells along the elongation zone of Lolium perenne L. leaves were determined at four developmental stages ranging from shortly after emergence of the leaf tip to shortly before cessation of leaf growth. Plants were grown at constant light and temperature. At all developmental stages the length of epidermal cells in the elongation zone of both the blade and sheath increased from 12 m at the leaf base to about 550 m at the distal end of the elongation zone, whereas the length of epidermal cells within the joint region only increased from 12 to 40 m. Throughout the developmental stages elongation was confined to the basal 20 to 30 mm of the leaf with maximum REGR occurring near the center of the elongation zone. Leaf elongation rate (LER) and the spatial distributions of REGR and epidermal cell lengths were steady to a first approximation between emergence of the leaf tip and transition from blade to sheath growth. Elongation of epidermal cells in the sheath started immediately after the onset of elongation of the most proximal blade epidermal cells. During transition from blade to sheath growth the length of the blade and sheath portion of the elongation zone decreased and increased, respectively, with the total length of the elongation zone and the spatial distribution of REGR staying near constant, with exception of the joint region which elongated little during displacement through the elongation zone. Leaf elongation rate decreased rapidly during the phase when only the sheath was growing. This was associated with decreasing REGR and only a small decrease in the length of the elongation zone. Data on the spatial distributions of growth rates and of epidermal cell lengths during blade elongation were used to derive the temporal pattern of epidermal cell elongation. These data demonstrate that the elongation rate of an epidermal cell increased for days and that cessation of epidermal cell elongation was an abrupt event with cell elongation rate declining from maximum to zero within less than 10 h.Abbreviations LER leaf elongation rate - REGR relative elemental growth rates  相似文献   

16.
The sporangiophores (spphs) of the fungusPhycomyces blakesleeanus bend upward in a negative gravitropic response when placed in a horizontal position in the dark. The spphs of a hypergravitropic mutant showed higher bending rate and shorter latency period than those of the wild type. In both strains, spphs of smaller diameter had higher bending rates. No significant differences were found between the wild type and the mutant and between the thin spphs and the spphs of standard diameter in respect to their elongation rates. Phototropic rate was also the same between the wild type and the mutant. Parameters influencing the gravitropic response such as diameter of the spph, absolute elongation rate, and ratio of differential growth between the upper and the lower sides of the extension zone of spph were investigated to elucidate the kinetics of bending in the mutant. The results demonstrate that the rapid gravitropic response in the mutant is due to its higher (about 5–6 times) differential-growth rate compared with the wild type.  相似文献   

17.
The current distribution of the introduced seagrass Zostera japonica is restricted to the mid- to upper intertidal zone in the coastal Pacific Northwest region of North America. The climate in this region is cool and wet, becoming hotter and dryer with increasing distance southward. Since temperature is likely to be an important factor affecting distribution of this species, growth of two populations located near the northern and southern limits of its established range along the Pacific Coast of North America were measured in an experimental setting across a range of temperatures typical of those in the field during the growing season (10, 20, and 30 °C). The effects of temperature and population were both significant. Leaf elongation, growth, and areal productivity rates of the northern population were consistently lower than those of the southern population. Across the range of temperatures, mean leaf elongation rates ranged from 0.47 to 1.40 cm2 shoot−1 d−1; mean growth rates ranged from 0.19 to 0.52 mg dry wt shoot−1 d−1. Mean areal productivity ranged from 0.54 to 1.92 g dry wt m−2 d−1. Maximum rates of leaf elongation, growth, and areal productivity for both populations were observed at 20 °C. However, leaf elongation, growth, and areal productivity of the northern population declined markedly at 30 °C, whereas no comparable declines were observed for the southern population. This suggests that Z. japonica populations near the southern limits of its established range may be better adapted to warmer temperatures than populations near the northern range limits and further range extensions southward along the California coast may be likely. These differences could be important in predicting the outcome of competitive interactions between native and introduced seagrass species, and in determining future patterns of distribution and zonation of Pacific Coast seagrasses.  相似文献   

18.
Two-year-old Metasequoia glyptostroboides and 3-month-old Aesculus turbinata seedlings were tilted at a 45° angle to induce compression wood formation on the lower side of the former species and tension wood on the upper side of the latter. Two weeks later, the seedlings were tilted in an opposite direction at 45° so that the upper and lower sides changed to each other. This reverse tilting was kept for 7 weeks for M. glyptostroboides and 6 weeks for A. turbinata. The seedlings were sampled and analyzed at intervals throughout each experimental period so that an ethylene evolution kinetic was monitored. Ethylene evolution from the cambial region of the upper and lower sides of tilted stems was measured separately by gas chromatography with a flame ionization detector. Xylem production expressed as wood area during each experimental period was microscopically determined. In both tilting and reverse tilting periods, the rates of ethylene evolution from the lower side of M. glyptostroboides and the upper side of A. turbinata, where xylem production was accelerated and compression or tension wood formation was induced, had increased to high levels, whereas those from the opposite sides had either remained low (in tilting period) or rapidly recovered to low levels (in reverse tilting period). The cambial activity quantified by wood formation, including reaction wood, in both species showed the same tendency as ethylene evolution. The stem side with vigorous ethylene evolution, xylem development and reaction wood formation reversed with the reversal of tilting orientation. The roles of accelerated ethylene evolution in reaction wood formation in the tilted seedlings of gymnosperm and angiosperm trees are compared and discussed.This work was presented at the 5th Pacific Region Wood Anatomy Conference, Yogyakarta, Indonesia, 9–14 September 2002  相似文献   

19.
Tropisms and other movements of a plant organ result from alterations in local rates of cell elongation and a consequent development of a growth differential between its opposite sides. Relative elemental rates of elongation (RELELs) are useful to characterize the pattern of growth along and round an organ. We assume that the value of the RELEL at a given point is dependent on distance from the tip and that the distribution of values along the organ surface can be characterized in terms of the spread and the position of the maximum value. A computer model is described which accommodates these parameters and simulates tropic curvatures due to differential growth. Additional regulatory functions help to return the simulated organ to its original orientation. Particular attention is given to the simulation of root gravitropism because here not only do each of the various growth and regulatory parameters have a known biological counterpart, but some can also be given an actual quantitative value. The growth characteristics relate to the biophysical properties of cells in the elongation zone of the root, while the regulatory functions relate to aspects of the graviperception and transmission systems. We believe that, given a suitably flexible model, computer simulation is a powerful means of characterizing, in a quantitative way, the contribution of each parameter to the elongation of plant organs in general and their tropisms in particular.  相似文献   

20.
Roots of Zea mays were maintained in a vertical orhorizontal position and the local elongation rate and H+ fluxes were measured using Sephadex beads containing a pH indicator. When the roots were kept horizontally, the growth of the lower side was strongly inhibited and that of the upper side slightly stimulated as compared with vertical roots. The H+ extrusion, which was greatest in the elongation zone, was strongly inhibited on the lower side and slightly stimulated on the upper side as compared with vertical roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号