共查询到20条相似文献,搜索用时 31 毫秒
1.
Voges B Vallbracht S Zimmer G Bossow S Neubert WJ Richter K Hobeika E Herrler G Ehl S 《Cellular immunology》2007,247(2):85-94
Respiratory syncytial virus (RSV) causes severe respiratory disease in infants and a vaccine is highly desirable. The fusion (F) protein of RSV is an important vaccine target, but the contribution of F-specific T cells to successful vaccination remains unclear. We studied the immune response to vaccination of mice with a recombinant Sendai virus expressing RSV F (rSeV F). rSeV F induced protective neutralizing antibody and RSV F-specific CTL responses. T cell immunity was stronger than that induced by recombinant vaccinia virus (rVV F), a well characterized reference vector. Vaccination of antibody-deficient mice showed that vaccine-induced RSV F-specific T cells were sufficient for protective immunity. rSeV F induced T cell immunity in the presence of neutralizing antibodies, which did not impair the vaccine response. Although the F protein only contains a subdominant CTL epitope, vaccination with rSeV F is sufficient to induce protective T cell immunity against RSV in mice. 相似文献
2.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses. Here, a recombinant replication-deficient adenovirus-based vaccine, rAd/3xG, expressing the soluble core domain of G glycoprotein (amino acids 130 to 230) engineered by codon optimization and tandem repetition for higher-level expression, was constructed and evaluated for its potential as an RSV vaccine in a murine model. A single intranasal immunization with rAd/3xG provided potent protection against RSV challenge which lasted for more than 10 weeks. Strong mucosal immunoglobulin A responses were also induced by a single intranasal immunization but not by intramuscular or oral administration of rAd/3xG. Interestingly, neither gamma interferon- nor interleukin-4-producing CD4 T cells directed to I-Ed-restricted epitope were detected in the lungs of rAd/3xG-immune mice upon challenge, whereas priming with vaccinia virus expressing RSV G (vvG) elicited strong Th1/Th2 mixed CD4 T-cell responses. Lung eosinophilia and vaccine-induced weight loss were significantly lower in the rAd/3xG-immune group than in the vvG-primed group. Together, our data demonstrate that a single intranasal administration of rAd/3xG elicits beneficial protective immunity and represents a promising vaccine regimen against RSV infection. 相似文献
3.
Recombinant Sendai virus expressing the G glycoprotein of respiratory syncytial virus (RSV) elicits immune protection against RSV 总被引:4,自引:0,他引:4 下载免费PDF全文
Takimoto T Hurwitz JL Coleclough C Prouser C Krishnamurthy S Zhan X Boyd K Scroggs RA Brown B Nagai Y Portner A Slobod KS 《Journal of virology》2004,78(11):6043-6047
Although RSV causes serious pediatric respiratory disease, an effective vaccine does not exist. To capture the strengths of a live virus vaccine, we have used the murine parainfluenza virus type 1 (Sendai virus [SV]) as a xenogeneic vector to deliver the G glycoprotein of RSV. It was previously shown (J. L. Hurwitz, K. F. Soike, M. Y. Sangster, A. Portner, R. E. Sealy, D. H. Dawson, and C. Coleclough, Vaccine 15:533-540, 1997) that intranasal SV protected African green monkeys from challenge with the related human parainfluenza virus type 1 (hPIV1), and SV has advanced to clinical trials as a vaccine for hPIV1 (K. S. Slobod, J. L. Shenep, J. Lujan-Zilbermann, K. Allison, B. Brown, R. A. Scroggs, A. Portner, C. Coleclough, and J. L. Hurwitz, Vaccine, in press). Recombinant SV expressing RSV G glycoprotein was prepared by using reverse genetics, and intranasal inoculation of cotton rats elicited RSV-specific antibody and elicited protection from RSV challenge. RSV G-recombinant SV is thus a promising live virus vaccine candidate for RSV. 相似文献
4.
5.
Nguyen TN Power UF Robert A Haeuw JF Helffer K Perez A Asin MA Corvaia N Libon C 《PloS one》2012,7(3):e34331
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130-230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130-230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 μg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation. 相似文献
6.
Park HJ Ferko B Byun YH Song JH Han GY Roethl E Egorov A Muster T Seong B Kweon MN Song M Czerkinsky C Nguyen HH 《PloS one》2012,7(6):e39921
The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics. 相似文献
7.
Crowe JE Firestone CY Murphy BR 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(7):3910-3918
A respiratory syncytial virus (RSV) vaccine will need to be administered by 1 mo of age to protect young infants; therefore, it will need to be effective in the presence of maternally acquired RSV Abs. In the present study, the immunogenicity and efficacy of two live attenuated RSV vaccine candidates of different level of attenuation were evaluated in mice passively immunized with varying quantities of RSV Abs. The replication of the RSV vaccines was suppressed in the lower, but not the upper, respiratory tract of the passively immunized mice. Immunization with either vaccine candidate was highly efficacious against challenge with wild-type RSV in both passively immunized and control mice. Nonetheless, a high level of immunity was seen even in passively/actively immunized animals that failed to develop a humoral immune response, suggesting that T cells mediated the immunity. Depletion of CD4+ and CD8+ T cells in passively/actively immunized and control animals at the time of challenge with wild-type RSV demonstrated that CD4+ and CD8+ T cells made significant independent contributions to the restriction of replication of RSV challenge virus in both the upper and lower respiratory tracts. Although passively acquired serum RSV Abs suppressed the primary systemic and mucosal Ab responses of IgM, IgG, and IgA isotypes, B lymphocytes were nevertheless primed for robust secondary Ab responses. Thus, immunity mediated by CD4+ and CD8+ T cells and Abs can be readily induced in mice by live RSV vaccine candidates in the presence of physiologic levels of RSV neutralizing Abs. 相似文献
8.
9.
10.
The cysteine-rich region and secreted form of the attachment G glycoprotein of respiratory syncytial virus enhance the cytotoxic T-lymphocyte response despite lacking major histocompatibility complex class I-restricted epitopes 下载免费PDF全文
Bukreyev A Serra ME Laham FR Melendi GA Kleeberger SR Collins PL Polack FP 《Journal of virology》2006,80(12):5854-5861
The cytotoxic T-lymphocyte (CTL) response is important for the control of viral replication during respiratory syncytial virus (RSV) infection. The attachment glycoprotein (G) of RSV does not encode major histocompatibility complex class I-restricted epitopes in BALB/c mice (H-2(d)). Furthermore, studies to date have described an absence of significant CTL activity directed against this protein in humans. Therefore, G previously was not considered necessary for the generation of RSV-specific CTL responses. In this study, we demonstrate that, despite lacking H-2(d)-restricted epitopes, G enhances the generation of an effective CTL response against RSV. Furthermore, we show that this stimulatory effect is independent of virus titers and RSV-induced inflammation; that it is associated primarily with the secreted form of G; and that the effect depends on the cysteine-rich region of G (GCRR), a segment conserved in wild-type isolates worldwide. These findings reveal a novel function for the GCRR with potential implications for the generation of protective cellular responses and vaccine development. 相似文献
11.
Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees 总被引:7,自引:0,他引:7 下载免费PDF全文
Whitehead SS Bukreyev A Teng MN Firestone CY St Claire M Elkins WR Collins PL Murphy BR 《Journal of virology》1999,73(4):3438-3442
The NS2 and SH genes of respiratory syncytial virus (RSV) have been separately deleted from a recombinant wild-type RSV strain, A2 (M. N. Teng and P. L. Collins, J. Virol. 73:466-473, 1998; A. Bukreyev et al., J. Virol. 71:8973-8982, 1997; and this study). The resulting viruses, designated rA2DeltaNS2 and rA2DeltaSH, were administered to chimpanzees to evaluate their levels of attenuation and immunogenicity. Recombinant virus rA2DeltaNS2 replicated to moderate levels in the upper respiratory tract, was highly attenuated in the lower respiratory tract, and induced significant resistance to challenge with wild-type RSV. The replication of rA2DeltaSH virus was only moderately reduced in the lower, but not the upper, respiratory tract. However, chimpanzees infected with either virus developed significantly less rhinorrhea than those infected with wild-type RSV. These findings demonstrate that a recombinant RSV mutant lacking either the NS2 or SH gene is attenuated and indicate that these deletions may be useful as attenuating mutations in new, live recombinant RSV vaccine candidates for both pediatric and elderly populations. The DeltaSH mutation was incorporated into a recombinant form of the cpts248/404 vaccine candidate, was evaluated for safety in seronegative chimpanzees, and can now be evaluated as a vaccine for humans. 相似文献
12.
O glycosylation of glycoprotein G of human respiratory syncytial virus is specified within the divergent ectodomain. 下载免费PDF全文
P L Collins 《Journal of virology》1990,64(8):4007-4012
cDNAs encoding the G glycoprotein of respiratory syncytial virus and the hemagglutinin-neuraminidase (HN) glycoprotein of parainfluenza virus type 3 were modified by site-specific mutagenesis and restriction fragment replacement to encode chimeric proteins consisting of the cytoplasmic and transmembrane domains of one protein fused to the ectodomain of the other. In the case of the HN ectodomain attached to the G transmembrane and cytoplasmic domains, cell surface expression of the chimera was reduced. Otherwise, the presence of the heterologous transmembrane and cytoplasmic domains had little effect on the processing of the HN or G ectodomain, as assayed by the acquisition of N-linked and O-linked carbohydrates, transport to the cell surface and, in the case of HN, folding, oligomerization, and hemadsorption activity. These results showed that the synthesis and processing of each ectodomain did not require the homologous transmembrane and cytoplasmic domains. In particular, O glycosylation of the G protein was specified fully by its ectodomain, even though this domain is highly divergent among the respiratory syncytial virus antigenic subgroups. In addition, whereas the cytoplasmic and transmembrane domains of the G protein were relatively highly conserved, they were nonetheless fully replaceable without significantly affecting processing. 相似文献
13.
Respiratory syncytial virus (RSV) is an important cause of acute lower respiratory tract disease in infants, young children, immunocompromised individuals, and the elderly. However, despite ongoing efforts to develop an RSV vaccine, there is still no authorized RSV vaccine for humans. Baculovirus has attracted attention as a vaccine vector because of its ability to induce a high level of humoral and cellular immunity, low cytotoxicity against various antigens, and biological safety for humans. In this study, we constructed a recombinant baculovirus- based vaccine expressing the M2 protein of RSV under the control of cytomegalovirus promoter (Bac_RSVM2) to induce CD8+ T-cell responses which play an important role in viral clearance, and investigated its protective efficacy against RSV infection. Immunization with Bac_RSVM2 via intranasal or intramuscular route effectively elicited the specific CD8+ T-cell responses. Most notably, immunization with Bac_RSVM2 vaccine almost completely protected mice from RSV challenge without vaccine-enhanced immunopathology. In conclusion, these results suggest that Bac_RSVM2 vaccine employing the baculovirus delivery platform has promising potential to be developed as a safe and novel RSV vaccine that provides protection against RSV infection. 相似文献
14.
Recombinant respiratory syncytial viruses lacking the C-terminal third of the attachment (G) protein are immunogenic and attenuated in vivo and in vitro 总被引:2,自引:0,他引:2 下载免费PDF全文
Elliott MB Pryharski KS Yu Q Parks CL Laughlin TS Gupta CK Lerch RA Randolph VB LaPierre NA Dack KM Hancock GE 《Journal of virology》2004,78(11):5773-5783
The design of attenuated vaccines for respiratory syncytial virus (RSV) historically focused on viruses made sensitive to physiologic temperature through point mutations in the genome. These prototype vaccines were not suitable for human infants primarily because of insufficient attenuation, genetic instability, and reversion to a less-attenuated phenotype. We therefore sought to construct novel attenuated viruses with less potential for reversion through genetic alteration of the attachment G protein. Complete deletion of G protein was previously shown to result in RSV strains overly attenuated for replication in mice. Using reverse genetics, recombinant RSV (rRSV) strains were engineered with truncations at amino acid 118, 174, 193, or 213 and respectively designated rA2cpDeltaG118, rA2cpDeltaG174, rA2cpDeltaG193, and rA2cpDeltaG213. All rA2cpDeltaG strains were attenuated for growth in vitro and in the respiratory tracts of BALB/c mice but not restricted for growth at 37 degrees C. The mutations did not significantly affect nascent genome synthesis in human lung epithelial (A549) cells, but infectious rA2cpDeltaG virus shed into the culture medium was dramatically diminished. Hence, the data suggested that a site within the C-terminal 85 amino acids of G protein is important for efficient genome packaging or budding of RSV from the infected cell. Vaccination with the rA2cpDeltaG strains also generated efficacious immune responses in mice that were similar to those elicited by the temperature-sensitive cpts248/404 strain previously tested in human infants. Collectively, the data indicate that the rA2cpDeltaG strains are immunogenic, not likely to revert to the less-attenuated phenotype, and thus candidates for further development as vaccines against RSV. 相似文献
15.
Modulation of protective immunity, eosinophilia, and cytokine responses by selective mutagenesis of a recombinant G protein vaccine against respiratory syncytial virus 下载免费PDF全文
Using an Escherichia coli-grown plasmid vector encoding a fragment of thioredoxin (Trx) fused to a central region (amino acids 128 to 229) of the respiratory syncytial virus (RSV) (Long strain) G protein, we employed site-directed mutagenesis to investigate the importance of selected amino acids to vaccine efficacy. Mice were immunized with a total of 10 wild-type or mutant Trx-G proteins and challenged intranasally with RSV. Striking differences in the induction of RSV G-protein-specific antibodies, protection against RSV challenge, cytokine RNA responses, and induction of RSV-associated eosinophilic inflammation were observed among the mutant proteins examined. Taken together, the results identify a critical role for specific amino acids in the induction of protective immunity and priming for eosinophilia against RSV. 相似文献
16.
Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity 总被引:8,自引:0,他引:8 下载免费PDF全文
We have replaced the ectodomain of the spike (S) protein of the Beaudette strain (Beau-R; apathogenic for Gallus domesticus chickens) of avian infectious bronchitis coronavirus (IBV) with that from the pathogenic M41 strain to produce recombinant IBV BeauR-M41(S). We have previously shown that this changed the tropism of the virus in vitro (R. Casais, B. Dove, D. Cavanagh, and P. Britton, J. Virol. 77:9084-9089, 2003). Herein we have assessed the pathogenicity and immunogenicity of BeauR-M41(S). There were no consistent differences in pathogenicity between the recombinant BeauR-M41(S) and its apathogenic parent Beau-R (based on snicking, nasal discharge, wheezing, watery eyes, rales, and ciliostasis in trachea), and both replicated poorly in trachea and nose compared to M41; the S protein from the pathogenic M41 had not altered the apathogenic nature of Beau-R. Both Beau-R and BeauR-M41(S) induced protection against challenge with M41 as assessed by absence of recovery of challenge virus and nasal exudate. With regard to snicking and ciliostasis, BeauR-M41(S) induced greater protection (seven out of nine chicks [77%]; assessed by ciliostasis) than Beau-R (one out of nine; 11%) but less than M41 (100%). The greater protection induced by BeauR-M41(S) against M41 may be related to the ectodomain of the spike protein of Beau-R differing from that of M41 by 4.1%; a small number of epitopes on the S protein may play a disproportionate role in the induction of immunity. The results are promising for the prospects of S-gene exchange for IBV vaccine development. 相似文献
17.
Falcone V Mihm D Neumann-Haefelin D Costa C Nguyen T Pozzi G Ricci S 《FEMS immunology and medical microbiology》2006,48(1):116-122
A conserved fragment comprising amino acid residues 130-230 of the G glycoprotein of human respiratory syncytial virus subtype A was expressed in the commensal bacterium Streptococcus gordonii. Recombinant streptococci displaying the G domain at the cell surface were used to immunize mice via both parenteral and mucosal routes. Subcutaneous immunization induced respiratory syncytial virus-specific serum immunoglobin G (IgG) capable of partially controlling virus replication in the lungs. Intranasal immunization with live bacteria stimulated the production of IgA against both the whole virus and the G domain in serum and bronchoalveolar fluid. Upon challenge, immunized animals had significantly lower virus titres in the lungs than the controls. Our results show for the first time that the G domain-expressing S. gordonii strain elicits both systemic and mucosal immunity that reduced respiratory syncytial virus replication in the lungs of mice. 相似文献
18.
Human respiratory syncytial virus (RSV) fusion glycoprotein (F) elicits neutralizing antibodies to RSV and has therefore attracted much attention as a suitable candidate antigen in the development of gene-based vaccines against RSV infections. However, a major obstacle in vaccine development has been the problem of antigen purification. To address this problem, we have developed a new method that combines sucrose gradient ultracentrifugation and a two-step chromatographic process, to purify RSV F from RSV particles propagated in HEp-2 cells. Analysis of the fractions produced using this method showed recovery of a functional homodimer with a molecular weight of 140 kDa, and 54% preservation of the original F. 相似文献
19.
Further characterization of the soluble form of the G glycoprotein of respiratory syncytial virus. 总被引:10,自引:7,他引:3 下载免费PDF全文
A soluble form of the G glycoprotein, the attachment protein, of respiratory syncytial virus is shed from infected HEp-2 cells. The Gs proteins of the Long and 18537 strains have apparent molecular sizes of 82 and 71 kilodaltons, respectively, 6 to 9 kilodaltons smaller than the virion-associated forms (Gv). The Gs protein of the Long strain was further characterized. Approximately one in six of all of the radiolabeled G molecules in these cultures at 24 h postinfection was present as the Gs protein. The Gs protein was clearly evident in culture fluids at 6 h postinfection, but the Gv protein could not be discerned until 12 h after infection, an observation that is consistent with the 12-h eclipse period for respiratory syncytial virus. Therefore, the Gs protein is shed, in part at least, from intact, infected cells and before the appearance of progeny virus. The appearance of a smaller Gs protein (74 kilodaltons) in fluids of infected calls which were incubated with tunicamycin shows that addition of N-linked oligosaccharides is not required for the genesis and shedding of the Gs protein. Sequencing of the amino terminus of purified Gs protein revealed two different termini, whose generations are consistent with cleavages of the full-length G protein between amino acids 65 and 66 and between residues 74 and 75. This result suggests that the Gs protein is present in two different forms which lack the proposed intracytoplasmic and transmembrane domains of the full-length G protein. 相似文献
20.
Yuan-Hui Fu Jin-Sheng He Xiao-Bo Wang Qiang Wu Mei Zhang Qian Tang Jian-Guo Qu 《Biochemical and biophysical research communications》2010,395(1):87-92
Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 相似文献