首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The techniques that are used to generate transgenic livestock are inefficient and expensive. This, coupled with the fact that most agriculturally relevant traits are complex and controlled by more than one gene, has restricted the use of transgenic technology. New methods for modifying the genome will underpin a resurgence of research using transgenic livestock. This will not only increase our understanding of basic biology in commercial species, but might also lead to the generation of animals that are more resistant to infectious disease.  相似文献   

2.
Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.  相似文献   

3.
Those pharmaceutical companies whose goal is to generate novel innovative drugs are faced with the challenge that only a fraction of the compounds tested in clinical trials eventually become a registered drug. This problem of attrition is compounded by the fact that the clinical trial or development stage is by far the most costly phase of bringing a new drug to market, consuming around 80 per cent of the total spend. Transgenic technology represents an attractive approach to reducing the attrition rate of compounds entering clinical trials by increasing the quality of the target and compound combinations making the transition from discovery into development. Transgenic technology can impact at many points in the discovery process, including target identification and target validation, and provides models designed to alert researchers early to potential problems with drug metabolism and toxicity, as well as providing better models for human diseases. In target identification, transgenic animals harbouring large DNA fragments can be used to narrow down genetic regions. Genetic studies often result in the identification of large genomic regions and one way to decrease the region size is to do complementation studies in transgenic animals using, for example, inserts from bacterial artificial chromosome (BAC) clones. In target validation, transgenic animals can be used for in vivo validation of a specific target. Considerable efforts are being made to establish new, rapid and robust tools with general utility for in vivo validation, but, so far, only transgenic animals work reliably on a wide range of targets. Transgenic animals can also be used to generate better disease models. Predictive animal models to test new compounds and targets will significantly speed up the drug discovery process and, more importantly, increase the quality of the compounds taken further in the research and development process. Humanised transgenic animals harbouring the human target molecule can be used to understand the effect of a compound acting on the human target in vivo. Also, models mimicking human drug metabolism will provide a means of assessing the effect of human-specific metabolites and of understanding the pharmacokinetic properties of potential drugs. In toxicology studies, transgenic animals are providing more predictive models. A good example of this are those models routinely used to look for carcinogenicity associated with new compounds.  相似文献   

4.
Increased Efficiency of Transgenic Livestock Production   总被引:4,自引:0,他引:4  
Production of transgenic livestock by pronuclear microinjection of DNA into fertilized zygotes suffers from the compounded inefficiencies of low embryo survival and low integration frequencies of the injected DNA into the genome. These inefficiencies are one of the major obstacles to the large-scale use of pronuclear microinjection techniques in livestock. We investigated exploiting the properties of recombinase proteins that allow them to bind DNA to generate transgenic animals via pronuclear microinjection. In theory, the use of recombinase proteins has the potential to generate transgenic animals with targeted changes, but in practice we found that the use of RecA recombinase-coated DNA increases the efficiency of transgenic livestock production. The use of RecA protein resulted in a significant increase in both embryo survival rates and transgene integration frequencies. Embryo survival rates were doubled in goats, and transgene integration was 11-fold higher in goats and three-fold higher in pigs when RecA protein-coated DNA was used compared with conventional DNA constructs without RecA protein coating. However, a large number of the transgenic founders generated with RecA protein-coated DNA were mosaic. The RecA protein coating of DNA is straightforward and can be applied to any species and any existing microinjection apparatus. These findings represent significant improvements on standard pronuclear microinjection methods by enabling the more efficient production of transgenic livestock.  相似文献   

5.
The birth of the first transgenic primate to have inherited a transgene from its parents opens the possibility to set up transgenic marmoset colonies, as these monkeys are small and relatively easy to keep and breed in research facilities. The prospect of transgenic marmoset models of human disease, readily available in the way that transgenic laboratory mice are currently, prompts excitement in the scientific community; but the idea of monkeys being bred to carry diseases is also contentious. We structure an ethical analysis of the transgenic marmoset case around three questions: whether it is acceptable to use animals as models of human disease; whether it is acceptable to genetically modify animals; and whether these animals’ being monkeys makes a difference. The analysis considers the prospect of transgenic marmoset studies coming to replace transgenic mouse studies and lesion studies in marmosets in some areas of research. The mainstream, broadly utilitarian view of animal research suggests that such a transition will not give rise to greater ethical problems than those presently faced. It can be argued that using marmosets rather than mice will not result in more animal suffering, and that the benefits of research will improve with a move to a species more similar in phylogenetic terms to humans. The biological and social proximity of monkeys and humans may also benefit the animals by making it easier for scientists and caretakers to recognize signs of suffering and increasing the human motivation to limit it. The animal welfare and research impacts of the transition to marmoset use will depend very much on the extent to which researchers take these issues seriously and seek to minimize animal harm and optimize human benefit.  相似文献   

6.
The ability to produce transgenic animals through the introduction of exogenous DNA has existed for many years. However, past methods available to generate transgenic animals, such as pronuclear microinjection or the use of embryonic stem cells, have either been inefficient or not available in all animals, bovine included. More recently somatic cell nuclear transfer has provided a method to create transgenic animals that overcomes many deficiencies present in other methods. This review summarizes the benefits of using somatic cell nuclear transfer to create bovine transgenics as well as the possible opportunities this method creates for the future.  相似文献   

7.
We have generated transgenic mice that express a diverse repertoire of human sequence immunoglobulins. The expression of this repertoire is directed by light and heavy chain minilocus transgenes comprised of human protein coding sequences in an unrearranged, germ-line configuration. In this paper we describe the construction of these miniloci and the composition of the CDR3 repertoire generated by the transgenic mice. The largest transgene discussed is a heavy chain minilocus that includes human mu and gamma 1 coding sequences together with their respective switch regions. It consists of a single 61 kb DNA fragment propagated in a bacterial plasmid vector. Both human heavy chain classes are expressed in animals that carry the transgene. In light chain transgenic animals the unrearranged minilocus sequences recombine to form VJ joints that use all five human J kappa segments, resulting in a diversity of human-like CDR3 regions. Similarly, in heavy chain transgenics the inserted sequences undergo VDJ joining complete with N region addition to generate a human-like VH CDR3 repertoire. All six human JH segments and at least eight of the ten transgene encoded human D segments are expressed. The transgenic animals described in this paper represent a potential source of human sequence antibodies for in vivo therapeutic applications.  相似文献   

8.
较小鼠等啮齿类动物而言,猴和小型猪等大型实验动物在亲缘关系上与人类更为接近,在解剖、生理生化代谢及疾病发病机制等多方面与人类更接近,使它们在复制人类疾病模型,研究疾病发病机制和新药研发等中有无可替代的应用。而制备遗传工程大动物可以更深入地解析人类疾病,并可为器官移植和新药研发提供更充分的实验材料。基于慢病毒介导的转基因方法近几年已越来越多地被用来制备遗传工程猴和小型猪。与传统的原核显微注射方法和体细胞核移植法相比,慢病毒介导的转基因方法转基因效率高,操作更简单。因此,构筑基于慢病毒介导的转基因方法制备遗传工程猴和小型猪的技术平台将对生物医学研究产生巨大推动作用。  相似文献   

9.
Traditional methods of transgene delivery in livestock are inefficient. Recently, human immunodeficiency virus (HIV-1) based lentiviral vectors have been shown to offer an efficient transgene delivery system. We now extend this method by demonstrating efficient generation of transgenic pigs using an equine infectious anaemia virus derived vector. We used this vector to deliver a green fluorescent protein expressing transgene; 31% of injected/transferred eggs resulted in a transgenic founder animal and 95% of founder animals displayed green fluorescence. This compares favourably with results using HIV-1 based vectors, and is substantially more efficient than the standard pronuclear microinjection method, indicating that lentiviral transgene delivery may be a general tool with which to efficiently generate transgenic mammals.  相似文献   

10.
At the close of the millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on human recombinant proteins. The ever-growing demand for such pharmaceutical proteins is an important driving force for the development of safe and large-scale production platforms. Since the efficacy of a human protein is generally dependent on both its amino acid composition as well as various post-translational modifications, many recombinant human proteins can only be obtained in a biologically active conformation when produced in mammalian cells. Hence, mammalian cell culture systems are often used for expression. However, this approach is generally known for limited production capacity and high costs. In contrast, the production of (human) recombinant proteins in milk of transgenic farm animals, particularly cattle, presents a safe alternative without the constraint of limited protein output. Moreover, compared to cell culture, production in milk is very cost-effective. Although transgenic farm animal technology was still in its infancy a decade ago, today it is on the verge of fulfilling its potential of providing therapeutic proteins that can not be produced otherwise in sufficient quantities or at affordable cost. Since 1989, we have been at the forefront of this development, as illustrated by the birth of Herman, the first transgenic bull. In this communication, we will present an overview of approaches we have taken over the years to generate transgenic founder animals and production herds. Our initial strategies were based on microinjection; at the time the only viable option to generate transgenic cattle. Recently, we have adopted a more powerful approach founded on the application of nuclear transfer. As we will illustrate, this strategy presents a breakthrough in the overall efficiency of generating transgenic animals, product consistency, and time of product development.  相似文献   

11.
Transplantation of spermatogonial stem cells into syngeneic or immunosuppressed recipient mice or rats can result in donor-derived spermatogenesis and fertility. Recently, this approach has been employed to introduce a transgene into the male germline. Germ-cell transplantation in species other than laboratory rodents, if successful, holds great promise as an alternative to the inefficient methods currently available to generate transgenic farm animals that can produce therapeutic proteins in their milk or provide organs for transplantation to humans. To explore whether germ-cell transplantation could result in donor-derived spermatogenesis and fertility in immunocompetent recipient goats, testis cells were transplanted from transgenic donor goats carrying a human alpha-1 antitrypsin expression construct to the testes of sexually immature wild-type recipient goats. After puberty, sperm carrying the donor-derived transgene were detected in the ejaculates of two out of five recipients. Mating of one recipient resulted in 15 offspring, one of which was transgenic for the donor-derived transgene. This is the first report of donor cell-derived sperm production and transmission of the donor haplotype to the next generation after germ-cell transplantation in a nonrodent species. Furthermore, these results indicate that successful germ-cell transplantation is feasible between immunocompetent, unrelated animals. In the future, transplantation of genetically modified germ cells may provide a more efficient alternative for production of transgenic domestic animals.  相似文献   

12.
Cryopreserved fertilized mouse ova were used to generate transgenic mice via micromanipulation. Five-DNA constructions were injected into a total of 1,052 cryopreserved ova, of which 683 (65%) survived the injection and were transferred into recipients. Of 35 recipients, 66% became pregnant and littered a total of 88 pups. As controls, these DNA constructions were also injected into 1,123 fresh ova, of which 744 (66%) survived and were transferred. Of 42 recipients, 79% became pregnant and littered a total of 167 pups. That is, 22% of fresh ova that were transferred developed into live pups, whereas only 13% of cryopreserved ova did so. Of the pups born, 42 of the 167 (25%) produced from fresh ova were transgenic, and 28 of the 88 (32%) produced from cryopreserved ova were transgenic. In terms of the injected ova that had been transferred, 5.6% of the 744 fresh and 4.1% of the 683 frozen ova developed into transgenic mice. These data indicate that the efficiency of production of transgenic mice from cryopreserved ova is close to that from fresh ova. That observation and the fact that cryopreserved ova allow more efficient utilization of animals suggest that cryopreserved ova can be used instead of fresh ova to produce transgenic mice.  相似文献   

13.
Production of foreign proteins in the tissues of transgenic animals represents an efficient and economical method of producing therapeutic and pharmaceutical proteins. In this study, we demonstrate that the mouse P12 gene promoter specific to the male accessory sex gland can be used to generate transgenic mice that express human growth hormone (hGH) in their seminal vesicle epithelium. The hGH is secreted into the ejaculated seminal fluids with the seminal vesicle lumen contents containing concentrations of up to 0.5 mg/ml. As semen is a body fluid that can be collected easily on a continuous basis, the production of transgenic animals expressing pharmaceutical proteins into their seminal fluid could prove to be a viable alternative to use of the mammary gland as a bioreactor.  相似文献   

14.
胚胎干细胞(embryonic stem cells,ESCs)是从囊胚的内细胞团分离出来的多潜能干细胞,具有多向分化的能力。将外源基因导入ES细胞建立转基因动物,对于研究外源基因的功能和调控具有一定的价值。载有外源性基因的病毒在感染ES细胞后,可通过囊胚注射获得具有胚系遗传的该转基因动物,并且这一外源基因可以稳定遗传和表达。该研究主要是利用携带hPML-RARα基因的慢病毒感染小鼠ES细胞系(R1),获得携带该基因的ES细胞,感染后的ES细胞核型正常。在此基础上,将感染后的ES细胞经囊胚注射,获得了携带有hPML-RARα基因的3只嵌合小鼠,其中,有1只具有遗传特性。对嵌合体小鼠与C57杂交的后代给予强力霉素(doxycycline)处理,3天以后骨髓细胞hPML-RARα基因开始表达,这证明了在小鼠体内该外源基因表达的可诱导性。以上证实,已经成功利用ES细胞建立了可诱导的白血病转基因小鼠模型。  相似文献   

15.
For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.  相似文献   

16.
RNA interference has become a widely used approach to perform gene knockdown experiments in cell cultures and more recently transgenic animals. A designed miRNA targeting the prion protein mRNA was built and expressed using the human PRNP promoter. Its efficiency was confirmed in transfected cells and it was used to generate several transgenic mouse lines. Although expressed at low levels, it was found to downregulate the endogenous mouse Prnp gene expression to an extent that appears to be directly related with the transgene expression level and that could reach up to 80% inhibition. This result highlights the potential and limitations of the RNA interference approach when applied to disease resistance.  相似文献   

17.
The formation of reactive oxygen species (ROS) and the activities of the antioxidant enzymes glutathione peroxidase (GPx) and catalase (CAT) were measured as a function of age in the striatum of mice transgenic for the Huntington's disease (HD) mutation. Striata from R6/1 transgenic male mice were dissected at different ages (11, 19, and 35 weeks). The amount of dichlorofluorescein (DCF), an index of ROS formation, was significantly increased in R6/1 mice at all ages tested, whereas GPx activity remained unchanged when compared with wild-type control animals in all groups evaluated. CAT activity was very low, just above detection in the striata of both control and transgenic mice. Nineteen and 35-week-old R6/1 mice also developed feet clasping behavior, but only 35-week-old animals showed body weight loss. Our findings support an active role of free radicals in the onset and progression of the neurological phenotype of R6/1 mice. We suggest that changes in ROS formation are due to an age-related increased propensity of the striatum of transgenic animals to generate oxygen radicals as a response to the evolving pathological conditions.  相似文献   

18.
The number of laboratories using the free living nematode C. elegans is rapidly growing. The popularity of this biological model is attributed to a rapid generation time and short life span, easy and inexpensive maintenance, fully sequenced genome, and array of RNAi resources and mutant animals. Additionally, analysis of the C. elegans genome revealed a great similarity between worms and higher vertebrates, which suggests that research in worms could be an important adjunct to studies performed in whole mice or cultured cells. A powerful and important part of worm research is the ability to use transgenic animals to study gene localization and function. Transgenic animals can be created either via microinjection of the worm germline or through the use of biolistic bombardment. Bombardment is a newer technique and is less familiar to a number of labs. Here we describe a simple protocol to generate transgenic worms by biolistic bombardment with gold particles using the Bio-Rad PDS-1000 system. Compared with DNA microinjection into hermaphrodite germline, this protocol has the advantage of not requiring special skills from the operator with regards to identifying worm anatomy or performing microinjection. Further multiple transgenic lines are usually obtained from a single bombardment. Also in contrast to microinjection, biolistic bombardment produces transgenic animals with both extrachromosomal arrays and integrated transgenes. The ability to obtain integrated transgenic lines can avoid the use of mutagenic protocols to integrate foreign DNA. In conclusion, biolistic bombardment can be an attractive method for the generation of transgenic animals, especially for investigators not interested in investing the time and effort needed to become skilled at microinjection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号