首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG (ΔmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) - D(+) trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted ΔmmaA4BCG strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection experiments, the protective responses induced by the ΔmmaA4BCG vaccine formulated in DDA/TDB adjuvant was consistently increased relative to nonadjuvanted BCG controls. Furthermore, the ΔmmaA4BCG-DDA/TDB vaccine induced significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNγ and TNFα (double positive) or IFNγ, TNFα and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were characterized by having higher IFNγ and TNFα median fluorescence intensity (MFI) values than monofunctional CD4 T cells. Interestingly, both BCG/adjuvant and ΔmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T cells expressing TNFα and IL-2 than nonadjuvanted BCG or ΔmmaA4BCG vaccines indicating that BCG/adjuvant mixtures may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNγ, significantly lower vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG. Overall, these data suggest that immunization with the ΔmmaA4BCG/adjuvant formulation may be an effective, safe, and relatively inexpensive alternative to vaccination with conventional BCG.  相似文献   

2.
Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher--albeit not sustained--protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol.  相似文献   

3.
New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in BCG caused reduced growth in aerated cultures compared to control BCG, but growth under limited oxygen availability was not markedly altered. Upon infection of mice, BCG:HspX displayed tissue-specific attenuation compared to control BCG, with reduced growth within the lung and liver but not the spleen. Both BCG:HspX and control BCG protected mice against aerosol M. tuberculosis challenge to a similar extent, however, immunodeficient mice infected with BCG:HspX survived significantly longer than mice infected with the control BCG strain. Therefore, altering the in vivo persistence of BCG by overexpression of HspX may be one important step towards developing a new tuberculosis vaccine with an improved safety profile and suitable protective efficacy against M. tuberculosis infection.  相似文献   

4.
Mice were protected against subsequent infection with Schistosoma mansoni by intradermal or s.c. vaccination with killed schistosomula or soluble parasite extracts and bacillus Calmette-Guérin (BCG). Treatment with i.p. immunization was somewhat less effective, whereas i.m. vaccination failed to elicit protective immunity. The level of resistance induced by intradermal immunization was influenced by the strain of BCG used, and isolated BCG cell walls did not reliably substitute for whole BCG organisms as adjuvant. Bordetella pertussis vaccine and saponin were also able to function as adjuvants for protective immunity in this model, whereas other immunopotentiators including Corynebacterium parvum and aluminum hydroxide were ineffective. No correlation between resistance to challenge infection and antibody levels was detected. Animals immunized intradermally using either protective or non-protective adjuvants all showed minimal humoral reactivity against schistosomulum surface Ag but strong IgG response to soluble parasite components including paramyosin, which is the major serologically recognized Ag in mice vaccinated intradermally with schistosome Ag plus BCG and is protective in this model. In contrast, a strong correlation was observed between resistance and Ag-specific cell-mediated reactivity, including IFN production by T lymphocytes in vitro and macrophage activation in vivo. These results further substantiate the hypothesis that protection in this model is based on cell-mediated immune effector mechanisms. Moreover, they may be of general relevance in the design of vaccination protocols using other Ag or against other infectious agents.  相似文献   

5.
Summary Cells derived from HSV-induced tumour lines were attenuated by X-irradiation (15,000 rads) and used to immunize groups of hamsters prior to challenge with homologous tumour cells. The results indicate that the three HSV tumours studied possess a weak transplantation antigen(s). Some cross-immunity between these tumours was observed, although the rejection antigen(s) were distinct from those of a SV40-induced hamster tumour line.Bacillus Calmétte-Guérin (BCG) inoculated in admixture with X-irradiated tumour cells or given 7 days prior to immunization with X-irradiated tumour cells increased host immunocompetence to subsequent tumour cell challenge. Thus, immunization with BCG was shown to induce a higher level of immunity than immunization with attenuated tumour cells alone, as demonstrated on re-challenge of hamsters with homologous tumour cells.  相似文献   

6.
In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA) boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb). In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVACAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT) system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer) strain of BCG to generate vaccine BCG.HIVACAT. All procedures complied with Good Laboratory Practices (GLPs). We demonstrated that the episomal plasmid pJH222.HIVACAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVACAT vaccine strain. The BCG.HIVACAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVACAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVACAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth.  相似文献   

7.
The high prevalence of herpes simplex virus 2 (HSV‐2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T‐cell responses to control viral infection and transmission. We designed rAd‐gD2, rAd‐gD2ΔUL25, and rAd‐ΔUL25 to investigate whether recombinant replication‐defective adenoviruses vaccine could induce specific T‐cell responses and protect mice against intravaginal HSV‐2 challenge compared with FI‐HSV‐2. In the present study, recombinant adenovirus‐based HSV‐2 showed higher reductions in mortality and stronger antigen‐specific T‐cell responses compared with FI‐HSV‐2 and the severity of genital lesions in mice immunized with rAd‐gD2ΔUL25 was significantly decreased by eliciting IFN‐γ‐secreting T‐cell responses compared with rAd‐gD2 and rAd‐ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV‐2 infection following intravaginal challenge in mice.  相似文献   

8.

Background

Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated.

Methods

Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA.

Results

This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life.

Conclusion

These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.  相似文献   

9.
Herpes simplex virus (HSV) recombinants are being developed as vaccine vectors for the expression of heterologous antigens. There is concern, however, that preexisting HSV immunity may decrease their effectiveness. We have addressed this issue in an animal model. Immunized mice were inoculated with a replication-defective HSV-1 vector that expressed the Escherichia coli beta-galactosidase protein as a model antigen. We assessed vector efficacy by analyzing the immunoglobulin G (IgG) antibody response and cellular proliferative response directed against beta-galactosidase. We report that the ability of the vector to induce antibody or proliferative responses was not diminished by preexisting immunity to HSV. Of further note, the anti-HSV and anti-beta-galactosidase IgG responses following vector administration were extremely durable in both immunized and naive mice. These results indicate that the ability of a replication-defective HSV-derived vaccine vector to elicit long-lived immune responses in mice is not impaired by prior HSV exposure.  相似文献   

10.
One dose of 10(7) viable units of Mycobacterium bovis, strain BCG, protected a significant number of Swiss mice from a primary challenge with 10(4) thoracic sporozoites of Plasmodium berghei. Immunization with irradiated sporozoites induced greater protection than that observed in BCG-treated with BCG and surviving a primary sporozoite challenge were not protected from rechallenge, whereas mice immunized with irradiated sporozoites and surviving initial challenge of sporozoites were solidly immune to further challenge. Immunizing mice with BCG and irradiated sporozoites simultaneously resulted in a synergistic effect of increased protection against a primary challenge of sporozoites only if the two immunogens were administered on the same day and if the mice were challenged 1 to 3 days later. Mice given BCG and irradiated sporozoites and surviving a primary challenge of sporozoites were unable to survive rechallenge. BCG given to mice previously immunized with irradiated sporozoites suppressed their protective immunity against sporozoite challenge.  相似文献   

11.
Background aimsDendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice.MethodsDCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge.ResultsIntramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody.ConclusionsOverall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.  相似文献   

12.
A recombinant (r-) Salmonella typhimurium aroA vaccine that secretes the naturally secreted protein of Mycobacterium bovis strain BCG, Ag85B, by means of the HlyB/HlyD/TolC export machinery (termed p30 in the following) was constructed. In contrast to r-S. typhimurium control, oral vaccination of mice with the r-S. typhimurium p30 construct induced partial protection against an intravenous challenge with the intracellular pathogen Mycobacterium tuberculosis, resulting in similar vaccine efficacy comparable to that of the systemically administered attenuated M. bovis BCG strain. The immune response induced by r-S. typhimurium p30 was accompanied by augmented interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) levels produced by restimulated splenocytes. These data suggest that the HlyB/HlyD/TolC-based antigen delivery system with attenuated r-S. typhimurium as carrier is capable of inducing an immune response against mycobacterial antigens.  相似文献   

13.

Background

In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production.

Methodology/Principal Findings

To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli.

Conclusions/Significance

We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG''s ability to protect against pulmonary TB.  相似文献   

14.
Toxoplasmosis is a zoonotic protozoal disease that has a major significance from the perspectives of public health and veterinary medicine. Therefore, an obvious long-term goal of many scientists would be the development of an effective vaccine. In this study, autoclaved vaccine was evaluated for its ability to protect mice against Toxoplasma gondii RH challenge as an acute infection model. Results showed that autoclaved Toxoplasma vaccine (ATV) when combined with BCG as an adjuvant was effective in triggering cell mediated immunity as shown by a significant increase in the percentage of splenic CD8+ T-lymphocytes. Following challenge, death of mice vaccinated with ATV was delayed for nine days. There was a significant decrease in parasite density in different organs, and a marked reduction of pathological changes in the liver suggesting that significant immune responses were mounted following vaccination. Future studies are warranted to test the vaccine against challenge with brain cysts as a chronic infection model and to evaluate it with other recent immunization strategies that can further enhance its immunogenicity.  相似文献   

15.
During 1997 in Hong Kong, 18 human cases of respiratory illness, including 6 fatalities, were caused by highly pathogenic avian influenza A (H5N1) viruses. Since H5 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. To better understand the pathogenesis and immunity to these viruses, we have used the BALB/c mouse model. Four H5N1 viruses replicated equally well in the lungs of mice without prior adaptation but differed in lethality for mice. H5N1 viruses that were highly lethal for mice were detected in multiple organs, including the brain. This is the first demonstration of an influenza A virus that replicates systemically in a mammalian species and is neurotropic without prior adaptation. The mouse model was also used to evaluate a strategy of vaccination against the highly pathogenic avian H5N1 viruses, using an inactivated vaccine prepared from nonpathogenic A/Duck/Singapore-Q/F119-3/97 (H5N3) virus that was antigenically related to the human H5N1 viruses. Mice administered vaccine intramuscularly, with or without alum, were completely protected from lethal challenge with H5N1 virus. Protection from infection was also observed in 70% of animals administered vaccine alone and 100% of mice administered vaccine with alum. The protective effect of vaccination correlated with the level of virus-specific serum antibody. These results suggests a strategy of vaccine preparedness for rapid intervention in future influenza pandemics that uses antigenically related nonpathogenic viruses as vaccine candidates.  相似文献   

16.
Active immunization is effective in the prophylaxis of Pseudomonas septicemia in burned mice. Vaccines were prepared from bacterial cells and growth medium of Verder's 10 different O serological types of Pseudomonas aeruginosa strains, as well as from Escherichia coli and Proteus mirabilis. Mice given a tail burn could be significantly protected against a local Pseudomonas challenge by both specific and, to a lesser extent, by nonspecific Pseudomonas vaccines prepared either from bacterial cells or from the medium in which they were grown. The vaccine was effective when administered prior to or after thermal trauma. After a more extensive rump burn, the protective effect of a specific vaccine given after thermal injury was significant only when the challenge was postponed until 4 days postburn; the level of protection was less than in the mice with smaller burns.  相似文献   

17.
We have examined the intranasal administration of a vaccine against Mycobacterium tuberculosis (M.tb) consisting of the mucosal adjuvant LTK63 and the Ag Ag85B-ESAT-6. Vaccination with LTK63/Ag85B-ESAT-6 gave a strong and sustained Th1 response mediated by IFN-gamma-secreting CD4 cells, which led to long-lasting protection against tuberculosis, equivalent to that observed with bacillus Calmette-Guérin (BCG) or Ag85B-ESAT-6 in dimethyldioctadecylammonium bromide/monophosphoryl lipid A. Because a crucial element of novel vaccine strategies is the ability to boost BCG-derived immunity, we also tested whether LTK63/Ag85B-ESAT-6 could act as a BCG booster vaccine in BCG-vaccinated mice. We found that vaccinating with LTK63/Ag85B-ESAT-6 strongly boosted prior BCG-stimulated immunity. Compared with BCG-vaccinated nonboosted mice, we observed that infection with M.tb led to a significant increase in anti-M.tb-specific CD4 T cells in the lungs of LTK63/Ag85B-ESAT-6-boosted animals. This correlated with a significant increase in the protection against M.tb in LTK63/Ag85B-ESAT-6-boosted mice, compared with BCG-vaccinated animals. Thus, LTK63/Ag85B-ESAT-6 represents an efficient preventive vaccine against tuberculosis with a strong ability to boost prior BCG immunity.  相似文献   

18.
A single intradermal injection of frozen and thawed schistosomula in conjunction with the bacterial adjuvant Mycobacterium bovis strain Bacille Calmette Guerin, Phipps substrain (BCG) induced significant levels of resistance to challenge Schistosoma mansoni infection in C57BL/6 mice. Immunization with the aqueous fraction remaining after 100,000 X G centrifugation of the larval lysate was also protective under these conditions, suggesting that some immunogenic determinants may not be membrane associated. Frozen-thawed cercariae and soluble components of adult worms also protected against challenge infection in these experiments. These observations indicate that soluble immunogens are present in both early and late developmental stages of the parasite, and therefore may be good candidate antigens for an immunochemically defined vaccine against schistosomiasis. Induction of humoral reactivity against soluble or membrane antigens was examined in mice protected against cercarial challenge by prior exposure to frozen-thawed larvae, soluble larval, or soluble adult antigens plus BCG. Animals that were immunized with frozen-thawed larvae produced low but significant levels of antibodies against larval surface antigens when examined by indirect immunofluorescence or by immunoprecipitation of surface-labeled schistosomula. Mice immunized with soluble antigens, however, showed negligible antibody reactivity against surface membrane antigens. Because mice immunized with soluble antigens were resistant to challenge infection, these results strongly suggest that anti-surface membrane reactivity is not required in the mechanism of protective immunity in this model. Sera from mice immunized with either total freeze-thaw larval lysate or soluble schistosome extracts all showed strong reactivity against soluble antigens, as detected by ELISA. Western blot analysis showed these antisera to react with a restricted number of high m.w. antigens that were present both in schistosomula and in adult worms. These antigens are therefore likely to play a major role in the development of resistance in this model as immunogens and/or as targets of protective immune response.  相似文献   

19.
Ribi, E. (Rocky Mountain Laboratory, Hamilton, Mont.), R. L. Anacker, W. Brehmer, G. Goode, C. L. Larson, R. H. List, K. C. Milner, and W. C. Wicht. Factors influencing protection against experimental tuberculosis in mice by heat-stable cell wall vaccines. J. Bacteriol. 92:869-879. 1966.-Studies of nonviable, heat-stable vaccines for active protection against experimental tuberculosis have been continued with a test involving aerosol challenge of intravenously vaccinated mice. The previously reported activating effect of light mineral oil on disrupted cells of the BCG strain was found to be shared by certain other mineral oils and a synthetic, 24-carbon hydrocarbon, but not by kerosene or any of several vegetable oils. Dry cell walls coated with a small amount of oil and dispersed in saline with aid of an emulsifier were suitable for intravenous administration and were effective in promoting resistance to challenge. Oil used in this manner, in contrast to water-in-oil emulsions of the Freund type which could not be administered intravenously, did not potentiate the tuberculin-sensitizing activity of the cell walls. Although the amount of oil required for full effect was small (< 0.5 ml/100 mg of dry antigen), there was a critical level below which optimal enhancement was not achieved. More stable suspensions than could be obtained with the other oils were readily prepared from cell walls treated with the synthetic hydrocarbon, 7-n-hexyloctadecane. Extended experience has shown that in this test system both the viable BCG standard vaccine and heated, oil-treated experimental vaccines gave highly reproducible results showing graded responses to graded doses.  相似文献   

20.
Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号