首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous reports indicate that ribulose 1,5-bisphosphate (RuBP) binds very tightly to inactive ribulose bisphosphate carboxylase (rubisco) in vitro. Therefore, we decided to investigate whether there was evidence for tight binding of RuBP associated with deactivation of rubisco in vivo. We modified a technique for rapidly separating `free' metabolites from those bound to high molecular compounds. Arabidopsis thaliana plants were illuminated at various irradiances before freezing the leaves in liquid N2 and assaying rubisco activity and RuBP. The percentage activation of rubisco varied from 37% at low irradiance (45 micromoles quanta per square meter per second) to 100% at high irradiance (800 micromoles quanta per square meter per second). The total amount of RuBP did not vary much with irradiance, but bound RuBP changed from 36% of the total at low irradiance to none at high irradiance. Bound RuBP was significantly correlated with the estimated number of inactive rubisco sites, with a ratio of about 1:1. After a step increase in irradiance, rubisco activation increased and total RuBP increased transiently, but steady levels of both occurred by 10 minutes. The amount of bound RuBP decreased with a similar time course to the estimated decrease in inactive rubisco sites. After a step decrease in irradiance, rubisco deactivated slowly for at least 25 minutes. Bound RuBP increased gradually but did so more slowly than the estimated increase in inactive rubisco sites.  相似文献   

2.
The requirements for activation of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) were investigated in leaves of Arabidopsis wild-type and a mutant incapable of light activating rubisco in vivo. Upon illumination with saturating light intensities, the activation state of rubisco increased 2-fold in the wild-type and decreased in the mutant. Activation of fructose 1,6-bisphosphate phosphatase was unaffected by the mutation. Under low light, rubisco deactivated in both the wild-type and the mutant. Deactivation of rubisco in the mutant under high and low light led to the accumulation of high concentrations of ribulose 1,5-bisphosphate. Inhibiting photosynthesis with methyl viologen prevented ribulose 1,5-bisphosphate accumulation but was ineffective in restoring rubisco activation to the mutant. Net photosynthesis and the rubisco activation level were closely correlated and saturated at a lower light intensity in the mutant than in wild-type. At CO2 concentrations between 100 and 2000 microliters per liter, the activation state was a function of the CO2 concentration in the dark but was independent of CO2 concentration in the light. High CO2 concentration (1%) suppressed activation in the wild-type and deactivation in the mutant. These results support the concept that rubisco activation in vivo is not a spontaneous process but is catalyzed by a specific protein. The absence of this protein, rubisco activase, is responsible for the altered characteristics of rubisco activation in the mutant.  相似文献   

3.
The activation state of ribulose bisphosphate carboxylase/oxygenase (rubisco) in a lysed chloroplast system is increased by light in the presence of a saturating concentration of ATP and a physiological concentration of CO2 (10 micromolar). Electron transport inhibitors and artificial electron donors and acceptors were used to determine in which region of the photosynthetic electron transport chain this light-dependent reaction occurred. In the presence of DCMU and methyl viologen, the artificial donors durohydroquinone and 2,6-dichlorophenolindophenol (DCPIP) plus ascorbate both supported light activation of rubisco at saturating ATP concentrations. No light activation occurred when DCPIP was used as an acceptor with water as electron donor in the presence of ATP and dibromothymoquinone, even though photosynthetic electron transport was observed. Nigericin completely inhibited the light-dependent activation of rubisco. Based on these results, we conclude that stimulation of light activation of rubisco by rubisco activase requires electron transport through PSI but not PSII, and that this light requirement is not to supply the ATP needed by the rubisco activase reaction. Furthermore, a pH gradient across the thylakoid membrane appears necessary for maximum light activation of rubisco even when ATP is provided exogenously.  相似文献   

4.
At bicarbonate concentrations equivalent to air levels of CO2, activation of ribulosebisphosphate carboxylase/oxygenase (rubisco) was inhibited by micromolar concentrations of glyoxylate in intact, lysed, and reconstituted chloroplasts and in stromal extracts. The concentration of glyoxylate required for 50% inhibition of light activation in intact chloroplasts was estimated to be 35 micromolar. No direct inhibition by glyoxylate was observed with purified rubisco or rubisco activase at micromolar concentrations. Levels of ribulose 1,5-bisphosphate and ATP increased in intact chloroplasts following glyoxylate treatment. Results from experiments with well-buffered lysed and reconstituted chloroplast systems ruled out lowering of pH as the cause of inhibition. With intact chloroplasts, micromolar glyoxylate did not prevent activation of rubisco at high (10 mM) concentrations of bicarbonate, indicating that rubisco could be spontaneously activated in the presence of glyoxylate. These results suggest the existence of a component of the in vivo rubisco activation system that is not yet identified and which is inhibited by glyoxylate.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - rubisco ribulosebisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

5.
The enzyme-catalyzed activation of ribulosebisphosphate carboxylase/oxygenase (rubisco) was investigated in an illuminated reconstituted system containing thylakoid membranes, rubisco, ribulosebisphosphate (RuBP), MgCl2, carbonic anhydrase, catalase, the artificial electron acceptor pyocyanine, and partially purified rubisco activase. Optimal conditions for light-induced rubisco activation were found to include 100 micrograms per milliliter rubisco, 300 micrograms per milliliter rubisco activase, 3 millimolar RuBP, and 6 millimolar free Mg2+ at pH 8.2. The half-time for rubisco activation was 2 minutes, and was 4 minutes for rubisco deactivation. The rate of rubisco deactivation was identical in the presence and absence of activase. The Kact(CO2) of rubisco activation in the reconstituted system was 4 micromolar CO2, compared to a Kact(CO2) of 25 to 30 micromolar CO2 for the previously reported spontaneous CO2/Mg2+ activation mechanism. The activation process characterized here explains the high degree of rubisco activation at the physiological concentrations of 10 micromolar CO2 and 2 to 4 millimolar RuBP found in intact leaves, conditions which lead to almost complete deactivation of rubisco in vitro.  相似文献   

6.
The light and CO2 response of (a) photosynthesis, (b) the activation state and total catalytic efficiency (kcat) of ribulose-1,5-bisphosphate carboxylase (rubisco), and (c) the pool sizes of ribulose 1,5-bisphosphate, (RuBP), ATP, and ADP were studied in the C3 annuals Chenopodium album and Phaseolus vulgaris at 25°C. The initial slope of the photosynthetic CO2 response curve was dependent on light intensity at reduced light levels only (less than 450 micromoles per square meter per second in C. album and below 200 micromoles per square meter per second in P. vulgaris). Modeled simulations indicated that the initial slope of the CO2 response of photosynthesis exhibited light dependency when the rate of RuBP regeneration limited photosynthesis, but not when rubisco capacity limited photosynthesis. Measured observations closely matched modeled simulations. The activation state of rubisco was measured at three light intensities in C. album (1750, 550, and 150 micromoles per square meter per second) and at intercellular CO2 partial pressures (C1) between the CO2 compensation point and 500 microbars. Above a C1 of 120 microbars, the activation state of rubisco was light dependent. At light intensities of 550 and 1750 micromoles per square meter per second, it was also dependent on C1, decreasing as the C1 was elevated above 120 microbars at 550 micromoles per square meter per second and above 300 microbars at 1750 micromoles per square meter per second. The pool size of RuBP was independent of C1 only under conditions when the activation state of rubisco was dependent on C1. Otherwise, RuBP pool sizes increased as C1 was reduced. ATP pools in C. album tended to increase as C1 was reduced. In P. vulgaris, decreasing C1 at a subsaturating light intensity of 190 micromoles per square meter per second increased the activation state of rubisco but had little effect on the kcat. These results support modelled simulations of the rubisco response to light and CO2, where rubisco is assumed to be down-regulated when photosynthesis is limited by the rate of RuBP regeneration.  相似文献   

7.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

8.
Wheat (Triticum aestivum L. cv Albis) was grown in open-top chambers in the field and fumigated daily with charcoal-filtered air (0.015 microliters per liter O3), nonfiltered air (0.03 microliters per liter O3), and air enriched with either 0.07 or 0.10 microliters per liter ozone (seasonal 8 hour/day [9 am-5 pm] mean ozone concentration from June 1 until July 10, 1987). Photosynthetic 14CO2 uptake was measured in situ. Net photosynthesis, dark respiration, and CO2 compensation concentration at 2 and 21% O2 were measured in the laboratory. Leaf segments were freeze-clamped in situ for the determination of the steady state levels of ribulose 1,5-bisphosphate, 3-phosphoglycerate, triose-phosphate, ATP, ADP, AMP, and activity of ribulose, 1,5-bisphosphate carboxylase/oxygenase. Photosynthesis of flag leaves was highest in filtered air and decreased in response to increasing mean ozone concentration. CO2 compensation concentration and the ratio of dark respiration to net photosynthesis increased with ozone concentration. The decrease in photosynthesis was associated with a decrease in chlorophyll, soluble protein, ribulose bisphosphate carboxylase/oxygenase activity, ribulose bisphosphate, and adenylates. No decrease was found for triose-phosphate and 3-phosphoglycerate. The ratio of ATP to ADP and of triosephosphate to 3-phosphoglycerate were increased suggesting that photosynthesis was limited by pentose phosphate reductive cycle activity. No limitation occurred due to decreased access of CO2 to photosynthetic cells since the decrease in stomatal conductance with increasing ozone concentration did not account for the decrease in photosynthesis. Ozonestressed leaves showed an increased degree of activation of ribulose bisphosphate carboxylase/oxygenase and a decreased ratio of ribulose bisphosphate to initial activity of ribulose bisphosphate carboxylase/oxygenase. Nevertheless, it is suggested that photosynthesis in ozone stressed leaves is limited by ribulose bisphosphate carboxylation possibly due to an effect of ozone on the catalysis by ribulose bisphosphate carboxylase/oxygenase.  相似文献   

9.
Photosynthetic carbon assimilation in plants is regulated by activity of the ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase. Although the carboxylase requires CO2 to activate the enzyme, changes in CO2 between 100 and 1,400 microliters per liter did not cause changes in activation of the leaf carboxylase in light. With these CO2 levels and 21% O2 or 1% or less O2, the levels of ribulose bisphosphate were high and not limiting for CO2 fixation. With high leaf ribulose bisphosphate, the Kact(CO2) of the carboxylase must be lower than in dark, where RuBP is quite low in leaves. When leaves were illuminated in the absence of CO2 and O2, activation of the carboxylase dropped to zero while RuBP levels approached the binding site concentration of the carboxylase, probably by forming the inactive enzyme-RuBP complex.

The mechanism for changing activation of the RuBP carboxylase in the light involves not only Mg2+ and pH changes in the chloroplast stroma, but also the effects of binding RuBP to the enzyme. In light when RuBP is greater than the binding site concentration of the carboxylase, Mg2+ and pH most likely determine the ratio of inactive enzyme-RuBP to active enzyme-CO2-Mg2+-RuBP forms. Higher irradiances favor more optimal Mg2+ and pH, with greater activation of the carboxylase and increased photosynthesis.

  相似文献   

10.
We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding 14CO2. The kcat of RuBP carboxylase (moles CO2 fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO2 and Mg2+ was unchanged by water stress. The ratio of activity before and after incubation with CO2 and Mg2+ (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions.  相似文献   

11.
CO2 fixation during photosynthesis is regulated by the activity of ribulose bisphosphate carboxylase (Rubisco). This conclusion became more apparent to me after CO2-fixation experiments using isolated spinach chloroplasts and protoplasts, purified Rubisco enzyme, and intact leaves. Ribulose bisphosphate (RuBP) pools and activation of Rubisco were measured and compared to 14CO2 fixation in light. The rates of 14CO 2 assimilation best followed the changes in Rubisco activation under moderate to high light intensities. RuBP pool sizes regulated 14 2 assimilation only in very high CO2 levels, low light and in darkness. Activation of Rubisco involves two separate processes: carbamylation of the protein and removal of inhibitors blocking carbamylation or blocking RuBP binding to carbamylated sites before reaction with CO2 or O2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and stromal ATP content were measured in intact isolated spinach chloroplasts. Treatments which decreased stromal ATP, such as incubation with the ATP analog β,γ-methylene adenosine triphosphate or with the energy transfer inhibitor phloridzin inhibited the light activation of rubisco. In the absence of added inorganic phosphate (Pi), light activation of rubisco was inhibited, coincident with low stromal ATP. Addition of methyl viologen restored both stromal ATP and rubisco activity to levels observed in the presence of Pi. Activation of rubisco was inhibited in the presence of 2 millimolar dihydroxyacetone phosphate or 3-phosphoglycerate and stromal ATP was also decreased under these conditions. Both were partially restored by increasing the Pi concentration. The strong correlation between activation state of rubisco and stromal ATP concentration in intact chloroplasts under a wide variety of experimental conditions indicates that light activation of rubisco is dependent on ATP and proportional to the ATP concentration. These observations can be explained in terms of the rubisco activase protein, which mediates activation of rubisco at physiological concentrations of CO2 and ribulose-1,5-bisphosphate and is dependent upon ATP.  相似文献   

13.
A. Makino  T. Mae  K. Ohira 《Planta》1985,166(3):414-420
Changes in gas-exchange rates during the life span of the leaves of rice (Oryza sativa L.) were analyzed quantitatively by measuring changes in the carboxylation/oxygenation and regeneration of ribulose 1,5-bisphosphate (RuBP) at photon fluence rates of 2000 (saturating) and 500 (subsaturating) μmol quanta·m-2·s-1 under ambient air conditions. The RuBP levels were always higher than the active-site concentrations of RuBP carboxylase (EC 4.1.1.39), irrespective of the irradiance supplied. Analysis of the CO2-assimilation rate as a function of intercellular CO2 concentration indicated that RuBP regeneration does not limit CO2 assimilation. The estimated RuBP-carboxylase/oxygenase activity in vivo was linearly correlated to the rate of CO2 assimilation at each level of irradiance. This enzyme activity was just enough to account for the rate of CO2 assimilation at the saturating irradiance and was 35% more than the rate of CO2 assimilation at the subsaturating irradiance. Analysis of the assimilation rate at subsaturating irradiance as a function of intercellular CO2 concentration indicated that a limitation caused by enzyme activation comes into play. The results indicate that the rate of CO2 assimilation in rice leaves under ambient air conditions is limited during their entire life span by the RuBP-carboxylation/oxygenation capacity.  相似文献   

14.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

15.
Ribulose bisphosphate carboxylase (rubisco) is the first enzyme in photosynthetic CO2 assimilation. It is also the single largest sink for nitrogen in plants. Several parameters of rubisco activity are often measured including initial activity upon extraction, degree of carbamylation, catalytic constant of the enzyme (kcat), and the total amount of enzyme present in a leaf. We report here improvements of the photometric assay of rubisco in which rubisco activity is coupled to NADH oxidation which is continuously monitored in a photometer. The initial lag usually found in this assay was eliminated by assaying rubisco activity at pH 8.0 instead of 8.2, using a large amount of phosphoglycerate kinase, and adding monovalent cations to the assay buffer. We found that when using the photometric assay, the ratio of activity found initially upon extraction divided by the activity after incubating with CO2 and Mg2+ reflects the degree of carbamylation as determined by 14carboxyarabinitol bisphosphate/12carboxyarabinitol bisphosphate competition. We developed methods for measuring the catalytic constant of rubisco as well as the total amount of enzyme present using the photometric assay and carboxyarabinitol 1,5-bisphosphate. We believe that the photometric assay for activity will prove more useful than the 14CO2 assay in many studies.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - GAP glyceraldehyde 3-phosphate - OD optical density - PGA 3-phosphoglycerate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

16.
The relationship between the activation state and the level of total activatable activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) was examined in tobacco protoplasts. When darkened protoplasts were illuminated, both activation and total activity increased, but at different rates; the t½ were 2.3 and 6.7 minutes, respectively. The light response of rubisco activation state and total activity, measured after 15 minutes of illumination, were similar but their responses to light transitions and photosynthetic inhibitors were different. When irradiance was reduced from saturating to subsaturating, deactivation of rubisco in protoplasts was immediate, whereas there was little change in total activity during the first 20 minutes following the transition. The light-induced increases in activation state and total activity were inhibited by nigericin, but activation was more sensitive exhibiting a response similar to that of photosynthesis. Treatment of tobacco protoplasts and leaves with methyl viologen at limiting irradiance increased rubisco activation, but inhibited the light-induced increase in total activity. These results indicate that light activation of rubisco is mechanistically distinct from the light-dependent changes in total activity in tobacco, a species containing carboxyarabinitol 1-phosphate, an endogenous inhibitor of total rubisco activity.  相似文献   

17.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

18.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

19.
The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (rubisco) activity in Phaseolus vulgaris was studied under moderate CO2 and high light, conditions in which photosynthesis in C3 plants can be insensitive to changes in O2 partial pressure. Steady state RuBP concentrations were higher, the calculated rate of RuBP use was lower and the activation state of rubisco was lower in low O2 relative to values observed in normal O2. It is suggested that the reduced activity of rubisco observed here is related to feedback effects which occur when the rate of net CO2 assimilation approaches the maximum capacity for starch and sucrose synthesis (triose phosphate utilization). The activation state of rubisco was independent of O2 partial pressure when light or CO2 was limiting for photosynthesis. Reduced activity of rubisco was also observed at limiting light. However, in this species light dependent changes in the concentration of an inhibitor of rubisco controlled the apparent Vmax of rubisco in low light while changes in the CO2-Mg2+ dependent activation of rubisco controlled the apparent Vmax in high light.  相似文献   

20.
《Plant science》1986,44(2):119-123
The low activity of ribulose bisphosphate carboxylase from darkened soybean (Glycine max [L.] Merr. cv. Bragg) leaves was not raised to the level of that from leaves in the light by CO2 and Mg2+, even after a 4-h incubation. The extract of darkened leaves, unlike the extract from illuminated leaves, was not fully CO2/Mg2+-activatable after Sephadex gel filtration in the absence of Mg2+. (NH4)2SO4 fractionation eliminated the inhibition effect found in the dark extracts resulting in similar rates for the extracts obtained from leaves in the dark and light. Although the Vmax values of the gel-filtered extracts from dark and light leaves differed by 3-fold, the Km(CO2)-values were the same (12.7 μM), as were the Km(RuBP)-values (250 μM). These data support the hypothesis that for soybean leaves in the dark a tightly-binding inhibitor renders much of the ribulose bisphosphate carboxylase enzyme catalytically non-functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号