首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Administration of lovastatin to male, Sprague-Dawley rats by addition of the drug to the normal chow diet caused a two-fold increase in the activity of the hepatic mitochondrial outer carnitine palmitoyltransferase, but lovastatin apparently did not affect the sensitivity of the outer carnitine palmitoyltransferase to inhibition by malonyl-CoA. There was also no effect of lovastatin on the activity of the hepatic mitochondrial inner carnitine palmitoyltransferase. Feeding of cholestyramine to rats did not affect either the mitochondrial outer carnitine palmitoyltransferase or the mitochondrial inner carnitine palmitoyltransferase.  相似文献   

3.
4.
Carnitine palmitoyltransferase 1A (CPT1A) is the key regulatory enzyme of hepatic long-chain fatty acid beta-oxidation. Human CPT1A deficiency is characterized by recurrent attacks of hypoketotic hypoglycemia. We presently analyzed at both the functional and structural levels five missense mutations identified in three CPT1A-deficient patients, namely A275T, A414V, Y498C, G709E, and G710E. Heterologous expression in Saccharomyces cerevisiae permitted to validate them as disease-causing mutations. To gain further insights into their deleterious effects, we localized these mutated residues into a three-dimensional structure model of the human CPT1A created from the crystal structure of the mouse carnitine acetyltransferase. This study demonstrated for the first time that disease-causing CPT1A mutations can be divided into two categories depending on whether they affect directly (functional determinant) or indirectly the active site of the enzyme (structural determinant). Mutations A275T, A414V, and Y498C, which exhibit decreased catalytic efficiency, clearly belong to the second class. They are located more than 20 A away from the active site and mostly affect the stability of the protein itself and/or of the enzyme-substrate complex. By contrast, mutations G709E and G710E, which abolish CPT1A activity, belong to the first category. They affect Gly residues that are essential not only for the structure of the hydrophobic core in the catalytic site, but also for the chain-length specificity of CPT isoforms. This study provides novel insights into the functionality of CPT1A that may contribute to the design of drugs for the treatment of lipid disorders.  相似文献   

5.
The carnitine palmitoyltransferase (CPT) family is essential for fatty acid oxidation. Recently, we found that CPT1C, one of the CPT1 isoforms, plays a vital role in cancer cellular senescence. However, it is unclear whether other isoforms (CPT1A, CPT1B, and CPT2) have the same effect on cellular senescence. This study illustrates the different effects of CPT knockdown on PANC-1 cell proliferation and senescence and MDA-MB-231 cell proliferation and senescence, as demonstrated by cell cycle kinetics, Bromodeoxyuridine incorporation, senescence-associated β-galactosidase activity, colony formation, and messenger RNA (mRNA) expression of key senescence-associated secretory phenotype factors. CPT1C exhibits the most substantial effect on cell senescence. Lipidomics analysis was performed to further reveal that the knockdown of CPTs changed the contents of lipids involved in mitochondrial function, and lipid accumulation was induced. Moreover, the different effects of the isoform deficiencies on mitochondrial function were measured and compared by the level of radical oxygen species, mitochondrial transmembrane potential, and the respiratory capacity, and the expression of the genes involved in mitochondrial function were determined at the mRNA level. In summary, CPT1C exerts the most significant effect on mitochondrial dysfunction-associated tumor cellular senescence among the members of the CPT family, which further supports the crucial role of CPT1C in cellular senescence and suggests that inhibition of CPT1C may represent as a new strategy for cancer treatment through the induction of tumor senescence.  相似文献   

6.
Carnitine palmitoyltransferases 1 and 2 (CPTs) facilitate the import of long-chain fatty acids into mitochondria. Modulation of the catalytic activity of the CPT system is currently under investigation for the development of novel drugs against diabetes mellitus. We report here the 1.6 A resolution structure of the full-length mitochondrial membrane protein CPT-2. The structure of CPT-2 in complex with the generic CPT inhibitor ST1326 ([R]-N-[tetradecylcarbamoyl]-aminocarnitine), a substrate analog mimicking palmitoylcarnitine and currently in clinical trials for diabetes mellitus treatment, was solved at 2.5 A resolution. These structures of CPT-2 provide insight into the function of residues involved in substrate binding and determination of substrate specificity, thereby facilitating the rational design of antidiabetic drugs. We identify a sequence insertion found in CPT-2 that mediates membrane localization. Mapping of mutations described for CPT-2 deficiency, a hereditary disorder of lipid metabolism, implies effects on substrate recognition and structural integrity of CPT-2.  相似文献   

7.
Carnitine palmitoyltransferase (CPT) II deficiency, an inherited disorder of mitochondrial long-chain fatty-acid (LCFA) oxidation, results in two distinct clinical phenotypes, namely, an adult (muscular) form and an infantile (hepatocardiomuscular) form. The rationale of this phenotypic heterogeneity is poorly understood. The adult form of the disease is commonly ascribed to the Ser-113-Leu substitution in CPT II. Only few data are available regarding the molecular basis of the infantile form of the disease. We report herein a homozygous A-2399-C transversion predicting a Tyr-628-Ser substitution in a CPT II-deficient infant. In vitro expression of mutant cDNA in COS-1 cells demonstrated the responsibility of this mutation for the disease. Metabolic consequences of the SER-113-Leu and Tyr-628-Ser substitutions were studied in fibroblasts. The Tyr-628-Ser substitution (infantile form) resulted in a 10% CPT II residual activity, markedly impairing LCFA oxidation, whereas the Ser-113-Leu substitution (adult form) resulted in a 20% CPT II residual activity, with out consequence on LCFA oxidation. These data show that CPT II activity has to be reduced below a critical threshold in order for LCFA oxidation in fibroblasts to be impaired. The hypothesis that this critical threshold differs among tissues could provide a basis to explain phenotypic heterogeneity of CPT II deficiency.  相似文献   

8.
A 20-year-old man was shown to have a deficiency of carnitine palmitoyltransferase (CPT) II in skeletal muscle. The evidence was: (i) there was no significant oxidation of [9,10-3H]-palmitate or of [1-14C]palmitate in mitochondrial fractions from fresh skeletal muscle from the patient; (ii) all the CPT activity in a homogenate of fresh muscle from the patient was overt (CPT I) with no increase in activity after the inner membrane was disrupted; (iii) all the CPT activity in the patient's muscle was inhibited by malonyl-CoA; and (iv) an immunoreactive peptide of 67 kDa corresponding to CPT II, present in mitochondria from controls, was absent in those from the patient.  相似文献   

9.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

10.
An assay procedure for carnitine palmitoyltransferase is described which allows rapid measurement of the overt activity of this enzyme in isolated rat hepatocytes. In a one-step procedure digitonin permeabilizes the plasma membrane and at the same time carnitine palmitoyltransferase activity is measured. The use of the present procedure shows that carnitine palmitoyltransferase activity is regulated on the short term by different types of agonists. Thus, insulin, epidermal growth factor, vasopressin and the phorbol ester PMA inhibit carnitine palmitoyltransferase activity, whereas glucagon treatment renders the enzyme more active. These changes in enzyme activity coincide with corresponding changes in the rate of fatty acid oxidation.  相似文献   

11.
C75 is a potential drug for the treatment of obesity. It was first identified as a competitive, irreversible inhibitor of fatty acid synthase (FAS). It has also been described as a malonyl-CoA analogue that antagonizes the allosteric inhibitory effect of malonyl-CoA on carnitine palmitoyltransferase I (CPT I), the main regulatory enzyme involved in fatty acid oxidation. On the basis of MALDI-TOF analysis, we now provide evidence that C75 can be transformed to its C75-CoA derivative. Unlike the activation produced by C75, the CoA derivative is a potent competitive inhibitor that binds tightly but reversibly to CPT I. IC50 values for yeast-overexpressed L- or M-CPT I isoforms, as well as for purified mitochondria from rat liver and muscle, were within the same range as those observed for etomoxiryl-CoA, a potent inhibitor of CPT I. When a pancreatic INS(823/13), muscle L6E9, or kidney HEK293 cell line was incubated directly with C75, fatty acid oxidation was inhibited. This suggests that C75 could be transformed in the cell to its C75-CoA derivative, inhibiting CPT I activity and consequently fatty acid oxidation. In vivo, a single intraperitoneal injection of C75 in mice produced short-term inhibition of CPT I activity in mitochondria from the liver, soleus, and pancreas, indicating that C75 could be transformed to its C75-CoA derivative in these tissues. Finally, in silico molecular docking studies showed that C75-CoA occupies the same pocket in CPT I as palmitoyl-CoA, suggesting an inhibiting mechanism based on mutual exclusion. Overall, our results describe a novel role for C75 in CPT I activity, highlighting the inhibitory effect of its C75-CoA derivative.  相似文献   

12.
The functional molecular sizes of the protein(s) mediating the carnitine palmitoyltransferase I (CPT I) activity and the [14C]malonyl-CoA binding in purified outer-membrane preparations from rat liver mitochondria were determined by radiation-inactivation analysis. In all preparations tested the dose-dependent decay in [14C]malonyl-CoA binding was less steep than that for CPT I activity, suggesting that the protein involved in malonyl-CoA binding may be smaller than that catalysing the CPT I activity. The respective sizes computed from simultaneous analysis for molecular-size standards exposed under identical conditions were 60,000 and 83,000 DA for malonyl-CoA binding and CPT I activity respectively. In irradiated membranes the sensitivity of CPT activity to malonyl-CoA inhibition was increased, as judged by malonyl-CoA inhibition curves for the activity in control and in irradiated membranes that had received 20 Mrad radiation and in which CPT activity had decayed by 60%. Possible correlations between these data and other recent observations on the CPT system are discussed.  相似文献   

13.
Acylamidomorpholinium carnitine analogues, 6-(tetradecanamidomethyl- and -hexadecanamidomethyl)-4,4-dimethylmorpholin-4-ium-2-a cetate, 1, synthesized as complete sets of stereoisomers, were assayed as inhibitors for isozymes of carnitine palmitoyltransferase (CPT). Microsomal CPT isoymes showed modest discrimination among the stereoisomers; while rat-liver mitochondrial CPT-I and CPT-II showed distinct differences. The tetradecanamidomethyl analogue of (2R,6S)-1 activated CPT-I but inhibited CPT-II.  相似文献   

14.
Carnitine palmitoyltransferase I (CPT I) of rat liver mitochondria is an integral, polytopic protein of the outer membrane that is enriched at contact sites. As CPT I kinetics are highly dependent on its membrane environment, we have measured the kinetic parameters of CPT I present in rat liver submitochondrial membrane fractions enriched in either outer membrane or contact sites. The K(m) for palmitoyl-CoA was 2.4-fold higher for CPT I in outer membranes than that for the enzyme in contact sites. In addition, whereas in contact sites malonyl-CoA behaved as a competitive inhibitor of CPT I with respect to palmitoyl-CoA, in outer membranes malonyl-CoA inhibition was non-competitive. As a result of the combination of these changes, the IC(50) for malonyl-CoA was severalfold higher for CPT I in contact sites than for the enzyme in bulk outer membrane. The K(i) for malonyl-CoA, the K(m) for carnitine, and the catalytic constant of the enzyme were all unaffected. It is concluded that the different membrane environments in outer membranes and contact sites result in an altered conformation of L-CPT I that specifically affects the long-chain acyl-CoA binding site. The accompanying changes in the kinetics of the enzyme provide an additional potent mechanism for the regulation of L-CPT I activity.  相似文献   

15.
The effects of ethanol administration on activity and regulation of carnitine palmitoyltransferase I (CPT-I) were studied in hepatocytes isolated from rats fed a liquid, high-fat diet containing 36% of total calories as ethanol or an isocaloric amount of sucrose. Cells were isolated at several time points in the course of a 5-week experimental period. Ethanol consumption markedly decreased CPT-I activity and increased enzyme sensitivity to inhibition by exogenously added malonyl-CoA. Changes in enzyme activity occurred sooner than those in enzyme sensitivity. Fatty acid oxidation to CO2 and ketone bodies was depressed in hepatocytes from ethanol-fed animals during the first part of the treatment. At the end of the 35-day period, there were no longer differences in the rate of ketogenesis between the two groups. At that time, however, the rate of CO2 formation was still impaired in the ethanol-fed animals. Furthermore, addition of ethanol or acetaldehyde to the incubation medium strongly depressed CPT-I activity and rates of fatty acid oxidation in hepatocytes from ethanol-treated rats, whereas these effects were much less pronounced in cells from control animals. The response of CPT-I activity to insulin, glucagon, vasopressin, and phorbol ester was blunted in cells derived from ethanol-fed rats. These changes in the regulation of CPT-I activity corresponded with those observed in the rate of fatty acid oxidation. It is concluded that CPT-I may play a role in the generation of the ethanol-induced fatty liver.  相似文献   

16.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

17.
Muscle carnitine palmitoyltransferase I (M-CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of L-carnitine. To determine the role of the C-terminal region of M-CPTI in enzyme activity, we constructed a series of deletion and substitution mutants. The mutants were expressed in the yeast Pichia pastoris, and the effect of the mutations on M-CPTI activity and malonyl-CoA sensitivity was determined in isolated mitochondria prepared from the yeast strains expressing the wild-type and deletion mutants. Deletion of the last 210, 113, 44, 20, 10, and 9 C-terminal amino-acid residues resulted in an inactive M-CPTI, but deletion of the last 8, 7, 6, and 3 C-terminal residues had no effect on activity, demonstrating that leucine-764 (L764) is essential for catalysis. Substitution of L764 with alanine caused a 40% loss in catalytic activity, but replacement of L764 with arginine resulted in an 84% loss of activity; substitution of L764 with valine had no effect on catalytic activity. The catalytic efficiency for the L764R mutant decreased by 80% for both substrates. Secondary structure prediction of the M-CPTI sequence identified a 21-amino-acid residue, 744-764, predicted to fold into a coiled-coil alpha-helix in the extreme C-terminal region of M-CPTI that may be important for native folding and activity. In summary, our data demonstrate that deletion of L764 or substitution with arginine inactivates the enzyme, suggesting that L764 may be important for proper folding of M-CPTI and optimal activity.  相似文献   

18.
Recent evidence has shown that the outer, overt, malonyl-CoA-inhibitable carnitine palmitoyltransferase (CPTo) activity resides in the mitochondrial outer membrane [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382]. A comparison of CPTo activity of rat liver mitochondria with the inner, initially latent, carnitine palmitoyltransferase (CPTi) of the mitochondrial inner membrane has revealed that the presence of digitonin and several other detergents inactivates CPTo activity. The CPTi activity, in contrast, was markedly stimulated by various detergents and phospholipid liposomes. These findings explain why in previous studies, which used digitonin or other detergents to expose, separate and purify the CPT activities, the inferences were drawn that (a) the ratio of latent to overt CPT was quite high, (b) both the CPT activities could be ascribed to one active protein recovered, and (c) the observed lack of malonyl-CoA inhibition indicated possible loss/separation of a putative malonyl-CoA-inhibition-conferring protein. Although both CPTo and CPTi were found to catalyse the forward and the backward reactions, CPTo showed greater capacity for the forward reaction and CPTi for the backward reaction. The easily solubilizable CPT, released on sonication of mitoplasts or of intact mitochondria under hypo-osmotic conditions, resembled CPTi in its properties. When octyl glucoside was used under appropriate conditions, 40-50% of the CPTo of outer membranes became solubilized, but it showed limited stability and decreased malonyl-CoA sensitivity. Malonyl-CoA-inhibitability of CPTo was decreased also on exposure of outer membranes to phospholipase C. When outer membranes that had been exposed to octyl glucoside or to phospholipase C were subjected to a reconstitution procedure using asolectin liposomes, the malonyl-CoA-inhibitability of CPTo was restored. A role of phospholipids in the malonyl-CoA sensitivity of CPTo is thus indicated.  相似文献   

19.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) normal rats and of fed and starved thyroidectomized rats. 2. In the fed state thyroidectomy substantially decreased overt carnitine palmitoyltransferase activity and also decreased both the Hill coefficient and the s0.5 when palmitoyl-CoA concentration was varied as substrate. Thyroidectomy did not appreciably alter the inhibitory effect of malonyl-CoA on the enzyme. 3. Starvation increased overt carnitine palmitoyltransferase activity in both the fed and the thyroidectomized state. In percentage terms this response to starvation was substantially greater after thyroidectomy. In both the hypothyroid and normal states starvation decreased sensitivity to inhibition by malonyl-CoA.  相似文献   

20.
Carnitine palmitoyltransferase II (CPT-II) mediates the import of long-chain fatty acids into the mitochondrial matrix for subsequent beta-oxidation. Defects of CPT-II manifest as a severe neonatal hepatocardiomuscular form or as a mild muscular phenotype in early infancy or adolescence. CPT-II deficiency is diagnosed by the determination of enzyme activity in tissues involving the time-dependent conversion of radiolabeled CPT-II substrates (isotope-exchange assays) or the formation of chromogenic reaction products. We have established a mass spectrometric assay (MS/MS) for the determination of CPT-II activity based on the stoichiometric formation of acetylcarnitine in a coupled reaction system. In this single-tube reaction system palmitoylcarnitine is converted by CPT-II to free carnitine, which is subsequently esterified to acetylcarnitine by carnitine acetyltransferase. The formation of acetylcarnitine directly correlates with the CPT-II activity. Comparison of the MS/MS method (y) with our routine spectrophotometric assay (x) revealed a linear regression of y = 0.58x + 0.12 (r = 0.8369). Both assays allow one to unambiguously detect patients with the muscular form of CPT-II deficiency. However, the higher specificity and sensitivity as well as the avoidance of the drawbacks inherent in the use of radiolabeled substrates make this mass spectrometric method most suitable for the determination of CPT-II activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号