首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. L. BELL 《Austral ecology》1985,10(3):207-221
Monthly samples of arthropods were collected for 3 years in savanna woodland at Wollomombi, New South Wales, from the foliage of eucalypts, bipinnate acacias, Olearia viscidula Jacksonia scoparia, Exocarpos cupressiformis and Cassinia spp., and from the ground-layer. The second and third years of the study coincided with the worst drought recorded for the area. Biomass of arthropods matched primary productivity and decreased greatly during the drought. In the first year there was a pronounced summer peak and winter low. Some species of plants showed peaks that did not conform to the overall pattern. Most arthropod groups were greatly reduced in number during the drought and some groups virtually disappeared, although coleopterans were not significantly affected. Arthropods were less severely reduced in shrubs than they were in the tree-layer of eucalypts. Arthropods were on average smaller during winter.  相似文献   

2.
Primary productivity of phytoplankton was measured in two fish ponds at monthly intervals during two annual cycles, of which the second one included an unusual drought. The temporal course of variations in phytoplankton primary productivity was essentially similar in both annual cycles, exhibiting peaks and troughs during summer and winter, respectively. However, monthly mean values of gross and net primary productivity of phytoplankton during the second year were several times higher than during the first. The greatest difference between the two years of investigation was found in the summer peak of primary productivity. It is estimated that an increase of nitrogen or phosphate or the N/P ratio by one unit during the second year caused a 2 to 16-fold enhancement of the rates of primary productivity. The seasonal changes of photosynthetic efficiency correlated with the concentrations of phosphate.  相似文献   

3.
Carbon sequestration in a high-elevation, subalpine forest   总被引:12,自引:0,他引:12  
We studied net ecosystem CO2 exchange (NEE) dynamics in a high‐elevation, subalpine forest in Colorado, USA, over a two‐year period. Annual carbon sequestration for the forest was 6.71 mol C m?2 (80.5 g C m?2) for the year between November 1, 1998 and October 31, 1999, and 4.80 mol C m?2 (57.6 g C m?2) for the year between November 1, 1999 and October 31, 2000. Despite its evergreen nature, the forest did not exhibit net CO2 uptake during the winter, even during periods of favourable weather. The largest fraction of annual carbon sequestration occurred in the early growing‐season; during the first 30 days of both years. Reductions in the rate of carbon sequestration after the first 30 days were due to higher ecosystem respiration rates when mid‐summer moisture was adequate (as in the first year of the study) or lower mid‐day photosynthesis rates when mid‐summer moisture was not adequate (as in the second year of the study). The lower annual rate of carbon sequestration during the second year of the study was due to lower rates of CO2 uptake during both the first 30 days of the growing season and the mid‐summer months. The reduction in CO2 uptake during the first 30 days of the second year was due to an earlier‐than‐normal spring warm‐up, which caused snow melt during a period when air temperatures were lower and atmospheric vapour pressure deficits were higher, compared to the first 30 days of the first year. The reduction in CO2 uptake during the mid‐summer of the second year was due to an extended drought, which was accompanied by reduced latent heat exchange and increased sensible heat exchange. Day‐to‐day variation in the daily integrated NEE during the summers of both years was high, and was correlated with frequent convective storm clouds and concomitant variation in the photosynthetic photon flux density (PPFD). Carbon sequestration rates were highest when some cloud cover was present, which tended to diffuse the photosynthetic photon flux, compared to periods with completely clear weather. The results of this study are in contrast to those of other studies that have reported increased annual NEE during years with earlier‐than‐normal spring warming. In the current study, the lower annual NEE during 2000, the year with the earlier spring warm‐up, was due to (1) coupling of the highest seasonal rates of carbon sequestration to the spring climate, rather than the summer climate as in other forest ecosystems that have been studied, and (2) delivery of snow melt water to the soil when the spring climate was cooler and the atmosphere drier than in years with a later spring warm‐up. Furthermore, the strong influence of mid‐summer precipitation on CO2 uptake rates make it clear that water supplied by the spring snow melt is a seasonally limited resource, and summer rains are critical for sustaining high rates of annual carbon sequestration.  相似文献   

4.
We performed an irrigation experiment to study the impact of summer drought on Pinus sylvestris establishment at its southernmost distribution limit. Watering was done during the first growing season simulating mesic summer conditions, and we monitored the consequences for survival and growth during the first growing season and the delayed consequences on the second growing season. In addition, we considered the heterogeneity created by the microhabitats, where seeds are found after dispersal (bare soil, under shrubs, and under adult pines). Summer drought was the main mortality factor in all the microhabitats. Watering increased emergence and doubled seedling survival compared to non-watered control sites. Differences were even higher when the cumulative effect on emergence and survival was considered, with an overall recruitment of 22.4% in watered plots vs. 7.9% in control. Irrigation increased growth in bare soil and under shrubs, but had scant effect on growth under pines, suggesting that radiation was the limiting factor in this microhabitat. The positive effect of irrigation on growth parameters persisted during the second growing season despite water was not added the second year, showing delayed consequences of drought on seedling performance. Summer drought thus limits Pinus sylvestris establishment in these southernmost forests by reducing both recruitment and growth. This might lead to the development of a remnant dynamic in these relict populations under the current regional increase in dryness and rainfall variability associated with global warming.  相似文献   

5.
First-year survival of brown trout in three Norwegian streams   总被引:1,自引:0,他引:1  
Monthly survival rates during the first year of life were estimated for the 1999 cohort of stream-resident brown trout Salmo trutta in three Norwegian streams, using capture-mark-recapture methods and the Cormack–Jolly–Seber model. It was hypothesized that reduced survival would occur during the winter. For one of the study populations, the data did support seasonal variation in survival, with monthly survival rates being lower during winter than during summer (0·65 v . 0·99). For the remaining two populations, there was no evidence for seasonal variations in monthly survival rates, but monthly survival rates were significantly different (0·87 v . 0·99). No evidence was found for size-dependent winter survival. Some marked individuals emigrated from the study sites, suggesting that survival rates were underestimated and that different survival rates among populations were partly due to different emigration rates. Net immigration of brown trout was evident at all three study sites.  相似文献   

6.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

7.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

8.
ABSTRACT. Influences of annual climatic variation on fire occurrence were examined along a rainfall gradient from temperate rainforest to xeric woodlands in northern Patagonia, Argentina. Fire chronologies were derived from fire scars on trees and related to tree-ring proxy records of climate over the period 1820–1974. Similarly, fire records of four Patagonian national parks for the period 1940–1988 were compared to instrumental weather data. Finally, the influences of broad-scale synoptic weather patterns on fire occurrence in northern Patagonia were explored.
Fire in Nothofagus rainforests is highly dependent on drought during the spring and summer of the same year in which fires occur and is less strongly favoured by drought during the spring of the previous year. The occurrence of fire in dry vegetation types near the steppe ecotone is less dependent on drought because even during years of normal weather fuels are thoroughly desiccated during the dry summer. In xeric Austrocedrus woodlands, fire occurrence and spread are promoted by droughts during the fire season and also appear to be favoured by above-average moisture conditions during the preceding 1 to 2 growing seasons which enhances fuel production. Thus, in the xeric woodlands fire is not simply dependent on drought but is favoured by greater climatic variability over time scales of several years.
Fire activity in northern Patagonia is greatly influenced by the intensity and latitudinal position of the subtropical high pressure cell of the southeast Pacific. Greater fire activity is associated with a more intense and more southerly located high pressure cell which blocks the influx of Pacific moisture into the continent. Although long-term changes in fire occurrence along the rainforest-to-xeric woodland gradient have been greatly influenced by human activities, annual variation in fire frequency and extent is also strongly influenced by annual climatic variation.  相似文献   

9.
In this study, I explored the interactions among host diet, nutritional status and gastrointestinal parasitism in wild bovids by examining temporal patterns of nematode faecal egg shedding in species with different diet types during a drought and non-drought year. Study species included three grass and roughage feeders (buffalo, hartebeest, waterbuck), four mixed or intermediate feeders (eland, Grant's gazelle, impala, Thomson's gazelle) and two concentrate selectors (dik-dik, klipspringer). Six out of the nine focal species had higher mean faecal egg counts in the drought year compared to the normal year, and over the course of the dry year, monthly faecal egg counts were correlated with drought intensity in four species with low-quality diets, but no such relationship was found for species with high-quality diets. Comparisons of dietary crude protein and faecal egg count in impala showed that during the dry season, individuals with high faecal egg counts (> or =1550 eggs/g of faeces) had significantly lower crude protein levels than individuals with low (0-500 eggs/g) or moderate (550-1500 eggs/g) egg counts. These results suggest that under drought conditions, species unable to maintain adequate nutrition, mainly low-quality feeders, are less able to cope with gastrointestinal parasite infections. In particular, during dry periods, reduced protein intake seems to be associated with declining resilience and resistance to infection.  相似文献   

10.
The life-history characteristics of the river blenny Salaria fluviatilis in a Mediterranean stream in north-east Spain have been studied. The maximum age observed was 4+ years in both sexes, although only age groups 0+ and 1+ years were well represented. For both sexes, growth was rapid between April and June (before the summer drought) and in October. The instantaneous rate of monthly growth (April to October) was positively correlated with water depth. All fish attained sexual maturity during their first year of life. Females spawned multiple times. Spawning occurred mainly from June to August, although older females (2+ years old) began in May. The relationship between fecundity and total length recorded for older females in the spring was not significantly different from that obtained for 1 year-old females in the summer. The mean diameter of ripe oocytes, however, was greater in older females. Larger eggs that were laid during a period of good food supply (spring) might have a higher probability of survival. The results suggest that female fecundity is affected by environmental conditions. The species is characterized by fast growth, early maturity, multiple spawning and limited longevity. This may be a good life-history strategy for small fish species in unstable environments, where adult mortality is high, variable or unpredictable. Some life-history traits of the river blenny suggest that this species might be vulnerable to more severe drought conditions than those associated with the Mediterranean climate.  相似文献   

11.
云南省植被NDVI时间变化特征及其对干旱的响应   总被引:7,自引:0,他引:7  
基于云南省74个气象站点的1997—2012年逐日降水资料和逐旬SPOT-NDVI值,利用标准化降水蒸散指数(SPEI)多尺度分析了云南省干旱时间和强度演变与NDVI时间动态特征及其相关性分析,进而探讨气候变化对植被的影响。结果表明,1999—2013年云南省年平均NDVI值和年最大NDVI值均呈现波浪式的发展趋势,其趋势线斜率分别为0.0017和0.0011;NDVI年内各月变化情况大体上相同;不同季节NDVI的年际变化特征呈现出显著差异。1997—2012年不同时间尺度SPEI均体现出干旱化加剧的趋势,并随SPEI的时间尺度增大而增大;3个月尺度的SPEI值(SPEI3)结果表明,各月的变化呈现先增大后减小的趋势;SPEI3反映出多年季节水平的干旱强度为:冬季秋季春季夏季。总体上,云南省的年均NDVI与SPEI的相关性极弱,年最大NDVI与SPEI呈正相关;多年月均NDVI与不同尺度SPEI的相关性较强且存在滞后性;不同季节NDVI与SPEI的相关性及滞后性有较大差异,其中冬季NDVI、秋季NDVI与其当年当季SPEI的负相关性较强。  相似文献   

12.
《Plant Ecology & Diversity》2013,6(3-4):393-404
Background: The tussock grass Festuca paniculata can become strongly dominant in subalpine grasslands after cessation of mowing. The depletion of water-soluble carbohydrate (WSC) reserves has been suggested as a mechanism by which mowing can contain this species. By affecting plant physiology and especially by favouring WSC accumulation, extreme summer weather (i.e. exceptionally hot and dry) could however counterbalance the effects of mowing on WSC reserves in F. paniculata. The relevance of this hypothesis needs to be tested in the current context of climate and land-use changes.

Aims: We investigated (1) the physiological mechanisms that control the growth of F. paniculata, (2) how they are affected by mowing and (3) whether extreme summer heat and drought could influence physiological mechanisms and thereby the ecological response of F. paniculata to mowing.

Methods: In a field experiment we manipulated weather and mowing during two summers. For current summer weather (W0), ambient temperature was unchanged and precipitation was adjusted on the past 30-year average. Extreme summer weather (W+) corresponded to a seasonal change (+1 °C, –80% in precipitation compared to W0) and a three-week heatwave (+4.3 °C) in the first year. In addition, vegetation was either mown at 5 cm in late summer (M) or left unmown (U). Concentrations and absolute contents of WSC contained in tiller bases, leaf nitrogen concentration (LNC), vegetative multiplication, plant growth and leaf senescence were measured from one to four times, depending on the variable considered, throughout the summer of the second year of the experiment.

Results: As compared to the unmown treatment, late-summer mowing decreased tillering, tussock size and LNC, regardless of the summer weather treatment. However, it depleted WSC pools, including fructans, only under current summer weather (W0).

Conclusions: These results suggest that extreme summer heat and drought could alleviate the sensitivity of F. paniculata to mowing. They raise the question of the consequences of recurrent summer extremes for conservation management in subalpine grasslands.  相似文献   

13.
The monthly patterns of aboveground biomass allocation were studied in the branches of six Mediterranean sub-shrubs with different leaf phenology. Four of them were seasonally dimorphic species, and the remaining two were a winter deciduous and a cushion plant with photosynthetic stems. By the analysis of these species we aimed to identify different aboveground biomass allocation patterns within seasonally dimorphic species and to understand the role of seasonal dimorphism as a strategy to avoid the main stresses of mediterranean climate: summer drought and winter cold. The biomass allocation to the different living and photosynthetic fractions of 3-year-old branches was studied monthly for a minimum of 13 months per species. Leaf area (LA, mm2) and leaf mass per area (LMA, mg cm−2) measurements were used to characterize the diverse types of leaves of each species. Standing dead and senescent tissues accounted for a great percentage of the branch biomass of seasonally dimorphic species both during summer and winter. Different patterns of photosynthetic biomass allocation were found within the seasonally dimorphic species analysed. These patterns ranged from the moderate photosynthetic biomass oscillation of Salvia lavandulifolia to the almost deciduousness of Lepidium subulatum, and they were achieved by keeping alive, drying out or shedding different types of branches and leaves throughout the year. The formation of stress tolerant leaves and the reduction in the amount of photosynthetic biomass responded both to the occurrence of summer drought and winter cold. These results demonstrate that seasonal dimorphism is a flexible ecological strategy, as it comprises very different leaf phenologies and enables plants to escape both summer drought and winter cold.  相似文献   

14.
A 22-year-old stand of coastal sage scrub in the coastal mountains of southern California had a peak standing aboveground biomass of 1,417 g/m2, determined by dimension analysis. Annual aboveground net primary production was 255 g/m2/yr, determined by monthly twig harvests of dominant species and the clipping production of subordinate species. The stand was codominated by two drought-deciduous species, Salvia leucophylla and Artemisia californica, which together comprised 81% of the biomass. Annual litterfall was measured at 194 g/m2/yr. These biomass, production, and litterfall values are less than those measured in most evergreen chaparral communities in California. Seasonally, the two dominant shrubs began aboveground production in the winter soon after the first rains and continued growth for six months until early summer. A massive leaf fall occurred in May–June as the summer drought began, but twig and inflorescence production for both species continued at a high rate into the summer months. Salvia leucophylla had two shoot types: 1) an early spring canopy shoot that elongated rapidly, produced the inflorescence, and died in mid-summer; and 2) a short side shoot produced in late spring with small dense leaves that were retained during the summer drought and early winter. Artemisia californica produced a single cohort of twigs in the early spring, most of which carried inflorescences by late summer.  相似文献   

15.
Soybean is an important legume food crop, and its seeds are rich in nutrients, providing humans and animals with edible oil and protein feed. However, soybean is sensitive to water requirements, and drought is an important factor limiting soybean yield and quality. This study used Heinong 84 (drought resistant variety) and Hefeng 46 (intermediate variety) as tested varieties planted in chernozem, albic, and black soils. The effects of drought stress on the activities of key enzymes in carbon metabolism and photosynthetic characteristics of soybean were studied during the flowering stage, most sensitive to water. (1) The activities of SS-1, 6PGDH, and G6PDH enzymes in soybean leaves first increased and then decreased under drought stress. The enzyme activity was the highest under moderate drought stress and weakest in the blank group. (2) Drought stress increased Phi2, PhiNO, and Fm in soybean leaves and reached the highest value under severe drought; with the increase in drought stress, PhiNPQ and Fv/Fm of soybean leaves gradually decreased, reaching the lowest under severe drought. (3) With the increase in drought stress, F0 and Fs of soybean leaves showed a single peak curve, and the maximum was at moderate drought. (4) Correlation analysis showed that F0 was greatly affected by varieties and soil types; Fs, F0, and Fm soil varieties had a great influence, and chlorophyll fluorescence parameters were affected differently under drought stress with different drought degrees. (5) Drought stress changed the agronomic traits and yield of soybean. With the increase of drought degree, plant height, node number of main stem, effective pod number, 100-seed weight and total yield decreased continuously. (6) Drought stress affected the dry matter accumulation of soybean. With the increase of drought degree, the dry matter accumulation gradually decreased. Among them, the leaf was most seriously affected by drought, and SD decreased by about 55% compared with CK. Under the condition of black soil, the dry matter accumulation of soybean was least affected by drought.  相似文献   

16.
杉木(Cunninghamia lanceolata)是亚热带地区主要造林树种之一,其在区域碳循环和缓解气候变化中起着重要的作用。以亚热带地区6个站点(荆关、马鬃岭、分宜、将乐、东风、高峰)杉木人工林为研究对象,建立树轮标准化年表,分析树木年轮年表与气候因子的关系,解析不同研究区杉木径向生长对气候变化的响应机制,探讨不同站点杉木对干旱事件的响应策略,为该地区杉木人工林的经营管理提供理论依据。研究结果表明,6个研究区杉木树轮宽度对气候变化的平均敏感度大于0.15,样本总体代表性大于0.85,均处于可接受水平,表明6个站点的杉木样本具有区域代表性,适用于进行气候相关分析。杉木径向生长主要与生长季的平均温度和降水量、上一年夏季的最低温度正相关,与当年夏季最高温度负相关,高峰站点的径向生长与7—10月的相对湿度显著正相关,其他地点径向生长与月相对湿度相关性较弱,分宜、东风和高峰站的径向生长与干旱指数显著正相关,其他地点的杉木树轮宽度与干旱指数相关性较弱。干旱事件对6个站点杉木生长均产生了负面影响,胸高断面积增长(Basal area increment, BAI)呈先上升后下降的趋势,在生长后...  相似文献   

17.
Understanding seedling performance across resource gradients is crucial for defining the regeneration niche of plant species under current environmental conditions and for predicting potential changes under a global change scenario. A 2‐year field experiment was conducted to determine how seedling survival and growth of two evergreen and two deciduous Quercus species vary along gradients of light and soil properties in two Mediterranean forests with contrasting soils and climatic conditions. Half the seedlings were subjected to an irrigation treatment during the first year to quantify the effects on performance of an alteration in the summer drought intensity. Linear and non‐linear models were parameterized and compared to identify major resources controlling seedling performance. We found both site‐specific and general patterns of regeneration. Strong site‐specificity was found in the identity of the best predictors of seedling survival: survival decreased linearly with increasing light (i.e. increasing desiccation risk) in the drier site, whereas it decreased logistically with increasing spring soil water content (i.e. increasing waterlogging risk) in the wetter site. We found strong empirical support for multiple resource limitation at the drier site, the response to light being modulated by the availability of soil resources (water and P). Evidence for regeneration niche partitioning among Quercus species was only found at the wetter site. However, at both sites Quercus species shared the same response to summer drought alleviation through water addition: increased first‐year survival but not final survival (i.e. after two years). This suggests that extremely dry summers (i.e. the second summer in the experiment) can cancel out the positive effects of previous wetter summers. Therefore, an increase in the intensity and frequency of summer drought with climate change might cause a double negative impact on Quercus regeneration, due to a general reduction in survival probability and the annulment of the positive effects of (infrequent) ‘wet’ years. Overall, results presented in this study are a major step towards the development of a mechanistic model of Mediterranean forest dynamics that incorporates the idiosyncrasies and generalities of tree regeneration in these systems, and that allow simulation and prediction of the ecological consequences of resource level alterations due to global change.  相似文献   

18.
Information taken from two long-term demographic studies on Orchis morio L. and Herminium monorchis (L.) R.Br, is used to explore some of the factors which influence flowering. The proportion of plants which flowered each year varied considerably between species, flowering in O. morio exceeding 40% in all years except one over an 18 year period; over a 30 year period (1966–95), the number of plants of Herminium in flower never exceeded 36% of the population and no inflorescences were produced in 1977 and 1991. The relationship between flowering in Herminium in a given year and the monthly rainfall and temperature for the current and 3 previous years was analysed using logistic regression. Best fits were obtained using data for the summer months in the previous year, with an increasing flowering rate with rainfall and a decline with temperature. It is hypothesized that drought and high temperatures in the summer reduce leaf area and cause premature senescence and the death of leaves, with the result that not enough carbohydrates are stored to enable plants to support or initiate inflorescences the following year. For species such as Orchis morio which produce leaves in the autumn and remain green, summer drought causes no problems as they have no above ground organs. Factors which influence flowering in this species are as yet unknown.  相似文献   

19.
In 2001–03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3−year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100−km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these conditions.  相似文献   

20.

Key message

A drought event during spring produces a stronger and long lasting decrease in growth of ponderosa pine seedlings than a summer drought event. However, survival is not differentially affected.

Abstract

Although there is certainty about the increasing frequency of extreme climatic events, the consequences of changing patterns of drought events within the growing season on the growth and survival of different species are much less certain. In particular, little knowledge is available on the differential effect on tree seedlings of a drought event at different times within the growing season. The objective of this study was to quantify the effect of a drought event imposed at different times over the growing season on the growth, survival and some related morphological and physiological variables of Pinus ponderosa seedlings from two seed sources. Four treatments were applied: control conditions; spring drought; summer drought and spring plus summer drought (SpSuD). A drought event in spring reduced stem growth and biomass accumulation in ponderosa pine seedlings during the occurrence of the drought and afterwards, even when plant water status had recovered. The lack of growth recovery could not be associated with loss of stem hydraulic conductivity or reduction in stomatal conductance after drought. However, the spring drought did not differentially affect plant survival, as was the case with prolonged drought in the SpSuD treatment. The summer drought event had a significant but much smaller impact on plant growth. Our results suggest different consequences of a drought event in spring or in summer in ponderosa pine seedlings. This knowledge may be relevant to understand and predict tree seedlings responses to changing patterns of drought events within the growing season in the framework of climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号