首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All animals require iron for survival. This requirement reflects the role of this mineral as a cofactor of numerous proteins. However, under physiological conditions, Fe(2+) oxidizes to Fe(3+) encouraging the formation of toxic free radicals. In mammals, the potential for oxidative damage from iron is minimized by binding iron to proteins. Mammalian iron metabolism is complex and numerous proteins are involved in iron absorption, transport, uptake and utilization. We have analyzed the Anopheles gambiae translated protein database for candidates that show identity to proteins involved in mammalian iron metabolism (Holt et al., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129-149). Our results indicate that proteins involved in iron absorption and intracellular iron utilization are, for the most part, conserved in A. gambiae. In contrast, proteins involved in the pathways of iron export from the gut, transport in hemolymph and uptake at peripheral tissues in mosquitos differ from those for mammals.  相似文献   

2.
Lipid raft microdomains, a component of detergent resistant membranes (DRMs), are routinely exploited by pathogens during host-cell entry. Multiple membrane-surface proteins mediate Plasmodium ookinete invasion of the Anopheles midgut, a critical step in the parasite life cycle that is successfully targeted by transmission-blocking vaccines (TBV). Given that lipid rafts are a common feature of host-pathogen interactions, we hypothesized that they promote the partitioning of midgut surface proteins and thus facilitate ookinete invasion. In support of this hypothesis, we found that five of the characterized Anopheles TBV candidates, including the leading Anopheles TBV candidate, AgAPN1, are present in Anopheles gambiae DRMs. Therefore, to extend the repertoire of putative midgut ligands that can be targeted by TBVs, we analyzed midgut DRMs by tandem mass spectrometry. We identified 1452 proteins including several markers of DRMs. Since glycosylphosphotidyl inositol (GPI)-anchored proteins partition to DRMs, we characterized the GPI subproteome of An. gambiae midgut brush-border microvilli and found that 96.9% of the proteins identified in the GPI-anchored fractions were also present in DRMs. Our study vastly expands the number of candidate malarial TBV targets for subsequent analysis by the broader community and provides an inferred role for midgut plasmalemma microdomains in ookinete cell invasion.  相似文献   

3.
~~Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis1. Curtis, C. F., Introduction 1: An overview of mosquito biology, behaviour and importance, in Olfaction in Mosquito-Host Interactions (eds. Bock, G. R.. Cardew, G.), New York: Wiley, 1996, 3-7. 2. Nighom, A., Hildebrand. J. G.. Dissecting the molecular mechanisms of olfaction in a malaria-vector mosquito, PNAS, 2002, 99(3): 1113-…  相似文献   

4.
The Anopheles gambiae genome sequence has been analyzed to find ATP-binding cassette protein genes based on deduced protein similarity to known family members. A nonredundant collection of 44 putative genes was identified including five genes not detected by the original Anopheles genome project machine annotation. These genes encode at least one member of all the human and Drosophila melanogaster ATP-binding protein subgroups. Like D. melanogaster, A. gambiae has subgroup ABCH genes encoding proteins different from the ABC proteins found in other complex organisms. The largest Anopheles subgroup is the ABCC genes which includes one member that can potentially encode ten different isoforms of the protein by differential splicing. As with Drosophila, the second largest Anopheles group is the ABCG subgroup with 12 genes compared to 15 genes in D. melanogaster, but only 5 genes in the human genome. In contrast, fewer ABCA and ABCB genes were identified in the mosquito genome than in the human or Drosophila genomes. Gene duplication is very evident in the Anopheles ABC genes with two groups of four genes, one group with three genes and three groups with two head to tail duplicated genes. These characteristics argue that the A. gambiae is actively using gene duplication as a mechanism to drive genetic variation in this important gene group.  相似文献   

5.
6.
The knowledge of the genomic structure of Plasmodium falciparum and of its main vector, Anopheles gambiae, may offer new perspectives for malaria therapy, vaccines or control of mosquito-borne transmission. New targets for future antimalarial drugs were identified, mainly apicoplast (a vestige of a vegetal structure incorporated by the parasite) and several enzymes, particularly proteases. The practical difficulty is now to select a few number of these "promising molecules", probably no more than 3 or 4, for a preclinical and clinical pharmaceutical development. Indeed, several other antimalarial drugs are already under development, and the industrial possibilities for developing new drugs are evidently limited. Many new vaccination targets and antigenic proteins were also identified. According to scientific and industrial limitations, a complete evaluation of these antigens is absolutely necessary to select a few of them for clinical development. For anti-malarial vaccinations, DNA vaccines may offer the most interesting perspectives, with the possibility of simultaneous immunisation against different Plasmodium stages and of an adjuvant effect by adding a gene encoding certain cytokines. In Anopheles gambiae genome, several genes encoding key-proteins (particularly odorant receptors necessary for blood feeding) were identified, as other genes encoding for proteins limiting the sexual development of Plasmodium inside its vector. From a theoretical viewpoint, genetically modified non biting or non transmitting mosquitoes offer new perspectives for the control of malaria transmission, but until now, the preliminary practical attempts gave rather poor results. On the whole, the genomic and proteomic of Plasmodium falciparum and Anopheles gambiae yielded exciting scientific results, but it is still too early and very speculative to imagine their practical applications for the control of malaria.  相似文献   

7.
8.
Insect chemosensory proteins (CSPs) as well as odorant-binding proteins (OBPs) have been supposed to transport hydrophobic chemicals to receptors on sensory neurons. Compared with OBPs, CSPs are expressed more broadly in various insect tissues. We performed a genome-wide analysis of the candidate CSP gene family in the silkworm. A total of 20 candidate CSPs, including 3 gene fragments and 2 pseudogenes, were characterized based on their conserved cysteine residues and their similarity to CSPs in other insects. Some of these genes were clustered in the silkworm genome. The gene expression pattern of these candidates was investigated using RT-PCR and microarray, and the results showed that these genes were expressed primarily in mature larvae and the adult moth, suggesting silkworm CSPs may be involved in development. The majority of silkworm CSP genes are expressed broadly in tissues including the antennae, head, thorax, legs, wings, epithelium, testes, ovaries, pheromone glands, wing disks, and compound eyes.  相似文献   

9.
The cadherin superfamily is a diverse and multifunctional group of proteins with extensive representation across genomes of phylogenetically distant species that is involved in cell-cell communication and adhesion. The mosquito Anopheles gambiae is an emerging model organism for the study of innate immunity and host-pathogen interactions, where the malaria parasite induces a profound rearrangement of the actin cytoskeleton at critical stages of infection. We have used bioinformatics tools to retrieve present sequence knowledge about the complete repertoire of cadherins in A. gambiae and compared it to that of the fruit fly, Drosophila melanogaster. In A. gambiae, we have identified 43 genes coding for cadherin extracellular domains that were re-annotated to 38 genes and represent an expansion of this gene family in comparison to other invertebrate organisms. The majority of Drosophila cadherins show a 1 : 1 Anopheles orthologue, but we have observed a remarkable expansion in some groups in A. gambiae, such as N-cadherins, that were recently shown to have a role in the olfactory system of the fruit fly. In vivo dsRNA silencing of overrepresented genes in A. gambiae and other genes showing expression at critical tissues for parasite infection will likely advance our understanding of the problems of host preference and hostpathogen interactions in this mosquito species.  相似文献   

10.
Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their expression confirmed by amino terminal sequencing. In this paper, we randomly sequenced a full-length cDNA library of An. stephensi and performed Edman degradation of polyvinylidene difluoride (PVDF)-transferred protein bands from salivary homogenates. Twelve of 13 proteins found by aminoterminal degradation were found among the cDNA clusters of the library. Thirty-three full-length novel cDNA sequences are reported, including a novel secreted galectin; the homologue of anophelin, a thrombin inhibitor; a novel trypsin/chymotrypsin inhibitor; an apyrase; a lipase; and several new members of the D7 protein family. Most of the novel proteins have no known function. Comparison of the putatively secreted and putatively housekeeping proteins of An. stephensi with An. gambiae proteins indicated that the salivary gland proteins are at a faster evolutionary pace. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed. The electronic tables and supplemental material are available at http://www.ncbi.nlm.nih.gov/projects/Mosquito/A_stephensi_sialome/ .  相似文献   

11.
Wolbachia pipientis are maternally inherited endosymbionts associated with cytoplasmic incompatibility, a potential mechanism to drive transgenic traits into Anopheles populations for malaria control. W. pipientis infections are common in many mosquito genera but have never been observed in any Anopheles species, leading to the hypothesis that Anopheles mosquitoes are incapable of harboring infection. We used an in vitro system to evaluate the ability of Anopheles gambiae cells to harbor diverse W. pipientis infections. We successfully established W. pipientis infections (strains wRi and wAlbB) in the immunocompetent Anopheles gambiae cell line Sua5B. Infection was confirmed by PCR, antibiotic curing, DNA sequencing, and direct observation using fluorescence in situ hybridization. The infections were maintained at high passage rates for >30 passages. Our results indicate that there is no intrinsic genetic block to W. pipientis infection in A. gambiae cells, suggesting that establishment of in vivo W. pipientis infections in Anopheles mosquitoes may be feasible.  相似文献   

12.
Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein-positive CSPs were intravenously infused into adult rats, many more ( approximately 12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts.  相似文献   

13.
Anopheles gambiae Giles s.s. and Anopheles arabiensis Patton (Diptera: Culicidae) are major vectors of malaria in Nigeria. We used 1115 bp of the mitochondrial COI gene to assess their population genetic structures based on samples from across Nigeria (n = 199). The mtDNA neighbour-joining tree, based on F(ST) estimates, separated An. gambiae M and S forms, except that samples of An. gambiae M from Calabar clustered with all the An. gambiae S form. Anopheles arabiensis and An. gambiae could be combined into a single star-shaped, parsimonious haplotype network, and shared three haplotypes. Haplotype diversity values were high in An. arabiensis and An. gambiae S, and intermediate in An. gambiae M; all nucleotide diversities were relatively low. Taken together, patterns of haplotype diversity, the star-like genealogy of haplotypes, five of seven significant neutrality tests, and the violation of the isolation-by-distance model indicate population expansion in An. arabiensis and An. gambiae S, but the signal was weak in An. gambiae M. Selection is supported as an important factor shaping genetic structure in An. gambiae in Nigeria. There were two geographical subdivisions in An. arabiensis: one included all southern localities and all but two central localities; the other included all northern and two central localities. Re-analysing an earlier microsatellite dataset of An. arabiensis using a Bayesian method determined that there were two distinctive clusters, northern and southern, that were fairly congruent with the mtDNA subdivisions. There was a trend towards decreasing genetic diversity in An. arabiensis from the northern savannah to the southern rainforest that corroborated previous data from microsatellites and polytene chromosomes.  相似文献   

14.
15.
Cold shock proteins (CSPs) are ancient nucleic acid-binding proteins and well conserved from bacteria to animals as well as plants. In prokaryotes, CSPs possess a single cold shock domain (CSD) while animal CSPs, flanked by N- and C-terminal domains, are commonly named Y-box proteins. Interestingly, the plants CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. The CSPs have been shown to play important role in development and stress adaptation in various plant species. The objective of this study was to find out the possible nucleic acid-binding affinities of whole CSP as well as independent domains, so that role of each individual domain may be revealed in Arabidopsis thaliana, the model plant species. The structure of CSP 3 protein from A. thaliana was modeled by homology-based approach and docking was done with different nucleic acid types.  相似文献   

16.
At the heart of the odor recognition process in all animals are G-protein-coupled receptors, which are seven-transmembrane domain proteins that initiate G-protein-mediated signaling cascades when activated by their ligands. Odorant receptors (ORs) are a large, diverse family of proteins with some 80 members in the mosquito Anopheles gambiae. With the assumption that more sensilla on female antennae are tuned to human odors than on male antennae, comparison of specific OR mRNA levels in male and female antennae can provide an indication as to which receptors may be stimulated by host odors. We have used RT PCR and quantitative real-time PCR (qRT PCR) to investigate sex-biased expression levels of 80 A. gambiae ORs in male and female antennae and maxillary palps. On the basis of prevalence of expression in female antennae and on a strong female relative to male expression bias we identified a short list of ORs that are likely involved in host odor recognition by female mosquitoes.  相似文献   

17.
18.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.  相似文献   

19.
A study was undertaken to identify the major larval habitats of the Anopheles gambiae (Giles) complex in rural Gambia. Mosquito larvae and pupae were sampled along transects and in specific habitats in the central region of the country during the rainy seasons of 1996 and 1997. The sampling showed that the major breeding sites were located on the flooded alluvial soils bordering the river. The largest numbers of larvae were found during September, one month after the peak rains. Polymerase chain reaction analysis of specimens showed that Anopheles melas (Theobald) was the dominant species in the flooded areas (81.5%), followed by A. gambiae sensu stricto (Giles) (18.0%) and A. arabiensis (Patton) (0.5%). By sampling in specific habitats it was evident that A. arabiensis was mainly breeding in rain-fed rice fields along the edge of the alluvial soils. Anopheles melas and A. gambiae s.s. often coexisted but whereas A. melas were found in water with a salinity of up to 72% sea water (25.2 g NaCl l(-1)), A. gambiae s.s. only occurred in water with up to 30% sea water (10.5 g NaCl l(-1)). Anopheles melas larvae were found in association with plant communities dominated by sedges and grasses (Eleocharis sp., Paspalum sp., Sporobolus sp.) and sea-purslane Sesuvium portulacastrum (L.) and the presence of cattle hoof prints, whereas A. gambiae s.s. larvae mainly occurred in association with Paspalum sp. and Eleocharis sp. The study showed that even during the peak rainy season, breeding of the A. gambiae complex is almost entirely restricted to the extensive alluvial areas along the river.  相似文献   

20.
Olfaction is critical to the host preference selection behavior of many disease-transmitting insects, including the mosquito Anopheles gambiae sensu stricto (hereafter A. gambiae), one of the major vectors for human malaria. In order to more fully understand the molecular biology of olfaction in this insect, we have previously identified several members member of a family of candidate odorant receptor proteins from A. gambiae (AgORs). Here we report the cloning and characterization of an additional AgOR gene, denoted as AgOr5, which shows significant similarity to putative odorant receptors in A. gambiae and Drosophila melanogaster and which is selectively expressed in olfactory organs. AgOr5 is tightly clustered within the A. gambiae genome to two other highly homologous candidate odorant receptors, suggesting that these genes are derived from a common ancestor. Analysis of the developmental expression within members of this AgOR gene cluster reveals considerable variation between these AgORs as compared to candidate odorant receptors from D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号