首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model‐testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic ‘offshore’ dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free‐ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well‐supported clade of Indo‐Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.  相似文献   

2.
There is a need for biological information to support current stock designations of bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. The existence of many inshore, resident “communities” raises questions as to the relationship these dolphins may hold with dolphins inhabiting neighboring inshore and coastal areas. In this study, population subdivision was examined among four resident, inshore bottlenose dolphin stocks (Sarasota Bay, FL, Tampa Bay, FL, Charlotte Harbor, FL and Matagorda Bay, TX) and one coastal stock (1–12 km offshore) in the Gulf of Mexico. Evidence of significant population structure among all areas was found on the basis of both mitochondrial DNA (mtDNA) control region sequence data and nine nuclear microsatellite loci. Estimates of relatedness showed no population contained a significantly high number of related individuals, while separate AMOVAs for males and females indicated that both sexes exhibit a significant level of site philopatry. Results presented here provide the first genetic evidence of population subdivision between the coastal Gulf of Mexico and adjacent inshore areas along the central west coast of Florida. Such strong genetic subdivision is surprising given the short geographical distance between many of these areas and the lack of obvious geographic barriers to prevent gene flow. These findings support the current, separate identification of stocks for bottlenose dolphins inhabiting the eastern coastal and inshore areas of the Gulf of Mexico.  相似文献   

3.
Little is known about the ecology and behavior of southern Australian bottlenose dolphins (Tursiops sp.). This hinders assessment of their conservation status and informed decision‐making concerning their management. We used boat‐based surveys and photo‐identification data to investigate site fidelity, residency patterns, and the abundance of southern Australian bottlenose dolphins in Adelaide's coastal waters. Sighting rates and site fidelity varied amongst individuals, and agglomerative hierarchical cluster analysis led to the categorization of individuals into one of three groups: occasional visitors, seasonal residents, or year‐round residents. Lagged identification rates indicated that these dolphins used the study area regularly from year to year following a model of emigration and reimmigration. Abundance estimates obtained from multisample closed capture‐recapture models ranged from 95 individuals (SE ± 45.20) in winter 2013 to 239 (SE ± 54.91) in summer 2014. The varying levels of site fidelity and residency, and the relatively high number of dolphins found throughout the study area highlights the Adelaide metropolitan coast as an important habitat for bottlenose dolphins. As these dolphins also appear to spend considerable time outside the study area, future research, conservation, and management efforts on this population must take into account anthropogenic activities within Adelaide's coastal waters and their adjacencies.  相似文献   

4.
Little is known about the population ecology of the recently described bottlenose dolphin species Tursiops australis. The classification of this species is still under debate, but this putative species is thought to be comprised of small and genetically distinct populations (including sub-populations under increasing anthropogenic threats) and is likely endemic to coastal southern Australia. Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci were used to assess genetic variation and hierarchical population structure of coastal T. cf. australis across a range of spatial scales and environmental discontinuities between southern Western Australia (WA) and central South Australia (SA). Overall, genetic diversity was similar to that typically found for bottlenose dolphins, although very low mtDNA diversity was found in Gulf St. Vincent (GSV) dolphins. We found historical genetic subdivision and likely differences in colonisation between GSV and Spencer Gulf, outer- and inner-gulf locations, and SA/WA and previously identified Victorian/Tasmanian populations. A hierarchical metapopulation structure was revealed along southern Australia, with at least six genetic populations occurring between Esperance, WA and southern Tasmania. In addition, fine-scale genetic subdivision was observed within each SA/WA population. In general, contemporary migration was limited throughout southern Australia, but an important gene flow pathway was identified eastward along the Great Australian Bight. Management strategies that promote gene flow among populations should be implemented to assist with the maintenance of the inferred metapopulation structure. Further research into the population ecology of this species is needed to facilitate well-informed management decisions.  相似文献   

5.
The marine environment provides an opportunity to examine population structure in species with high dispersal capabilities and often no obvious barriers to genetic exchange. In coastal waters of the western North Atlantic, common bottlenose dolphins, Tursiops truncatus, are a highly mobile species with a continuous distribution from New York to Florida. We examine if the highly mobile nature coupled with no obvious geographic barriers to movement in this region result in a large panmictic population. Mitochondrial control region sequences and 18 microsatellite loci indicate dolphins are partitioning the habitat both latitudinally and longitudinally. A minimum of five genetically differentiated populations were identified among 404 samples collected in the range of New Jersey to northern Florida using both genetic marker types, some inhabiting nearshore coastal waters and others utilizing inshore estuarine waters. The genetic results reject the hypothesis of a single stock of coastal bottlenose dolphins put forth after the 1987–1988 epizootic that caused a large‐scale die‐off of dolphins and suggest instead the disease vector was transferred from one population to the next as a result of seasonal migratory movements of some populations. These coastal Atlantic populations also differ significantly from bottlenose dolphin samples collected in coastal waters of the northern Gulf of Mexico, implying a long‐term barrier to movement between the two basins.  相似文献   

6.
We used mitochondrial and nuclear genetic markers to investigate population structure of common bottlenose dolphins, Tursiops truncatus, around the main Hawaiian Islands. Though broadly distributed throughout the world's oceans, bottlenose dolphins are known to form small populations in coastal waters. Recent photo‐identification data suggest the same is true in Hawaiian waters. We found genetic differentiation among (mtDNA ΦST= 0.014–0.141, microsatellite FST= 0.019–0.050) and low dispersal rates between (0.17–5.77 dispersers per generation) the main Hawaiian Island groups. Our results are consistent with movement rates estimated from photo‐identification data and suggest that each island group supports a demographically independent population. Inclusion in our analyses of samples collected near Palmyra Atoll provided evidence that the Hawaiian Islands are also occasionally visited by members of a genetically distinct, pelagic population. Two of our samples exhibited evidence of partial ancestry from Indo‐Pacific bottlenose dolphins (T. aduncus), a species not known to inhabit the Hawaiian Archipelago. Our findings have important implications for the management of Hawaiian bottlenose dolphins and raise concerns about the vulnerability to human impacts of pelagic species in island ecosystems.  相似文献   

7.
Despite no obvious barrier to gene flow, historical environmental processes and ecological specializations can lead to genetic differentiation in highly mobile animals. Ecotypes emerged in several large mammal species as a result of niche specializations and/or social organization. In the North‐West Atlantic, two distinct bottlenose dolphin (Tursiops truncatus) ecotypes (i.e. ‘coastal’ and ‘pelagic’) have been identified. Here, we investigated the genetic population structure of North‐East Atlantic (NEA) bottlenose dolphins on a large scale through the analysis of 381 biopsy‐sampled or stranded animals using 25 microsatellites and a 682‐bp portion of the mitochondrial control region. We shed light on the likely origin of stranded animals using a carcass drift prediction model. We showed, for the first time, that coastal and pelagic bottlenose dolphins were highly differentiated in the NEA. Finer‐scale population structure was found within the two groups. We suggest that distinct founding events followed by parallel adaptation may have occurred independently from a large Atlantic pelagic population in the two sides of the basin. Divergence could be maintained by philopatry possibly as a result of foraging specializations and social organization. As coastal environments are under increasing anthropogenic pressures, small and isolated populations might be at risk and require appropriate conservation policies to preserve their habitats. While genetics can be a powerful first step to delineate ecotypes in protected and difficult to access taxa, ecotype distinction should be further documented through diet studies and the examination of cranial skull features associated with feeding.  相似文献   

8.
Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal‐offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST =  0.183, p < .001; ΦST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed.  相似文献   

9.
Despite the openness of the oceanic environment, limited dispersal and tight social structure often induce genetic structuring in marine organisms, even in large animals such as cetaceans. In the bottlenose dolphin, mitochondrial and nuclear DNA analyses have revealed the existence of genetic differentiation between pelagic (or offshore) and coastal (or nearshore) ecotypes in the western North Atlantic, as well as between coastal populations. Because previous studies concentrated on continental margins, we analysed the population structure of bottlenose dolphins in two of the most isolated archipelagos of the North Atlantic: the Azores and Madeira. We analysed 112 samples collected on live animals in the two archipelagos, and nine samples collected on stranded animals in Madeira and mainland Portugal. Genetic analyses consisted in molecular sexing, sequencing of part of the mitochondrial hyper-variable region, and screening of ten microsatellite loci. We predicted that: (1) there is at least one pelagic and one or more coastal populations in each archipelago; (2) populations are differentiated between and possibly within archipelagos. Contrary to these predictions, results indicated a lack of population structure in the study area. In addition, comparison with published sequences revealed that the samples from the Azores and Madeira were not significantly differentiated from samples of the pelagic population of the western North Atlantic. Thus, bottlenose dolphins occurring in the pelagic waters of the North Atlantic belong to a large oceanic population, which should be regarded as a single conservation unit. Unlike what is known for coastal populations, oceanic bottlenose dolphins are able to maintain high levels of gene flow.  相似文献   

10.
Knowledge about the ecology of bottlenose dolphins in the Southwestern Atlantic Ocean is scarce. Increased by-catch rates over the last decade in coastal waters of southern Brazil have raised concerns about the decline in abundance of local dolphin communities. Lack of relevant data, including information on population structure and connectivity, have hampered an assessment of the conservation status of bottlenose dolphin communities in this region. Here we combined analyses of 16 microsatellite loci and mitochondrial DNA (mtDNA) control region sequences to investigate genetic diversity, structure and connectivity in 124 biopsy samples collected over six communities of photographically identified coastal bottlenose dolphins in southern Brazil, Uruguay and central Argentina. Levels of nuclear genetic diversity were remarkably low (mean values of allelic diversity and heterozygosity across all loci were 3.6 and 0.21, respectively), a result that possibly reflects the small size of local dolphin communities. On a broad geographical scale, strong and significant genetic differentiation was found between bottlenose dolphins from southern Brazil–Uruguay (SB–U) and Bahía San Antonio (BSA), Argentina (AMOVA mtDNA ΦST = 0.43; nuclear FST = 0.46), with negligible contemporary gene flow detected based on Bayesian estimates. On a finer scale, moderate but significant differentiation (AMOVA mtDNA ΦST = 0.29; nuclear FST = 0.13) and asymmetric gene flow was detected between five neighbouring communities in SB–U. Based on the results we propose that BSA and SB–U represent two distinct evolutionarily significant units, and that communities from SB–U comprise five distinct Management Units (MUs). Under this scenario, conservation efforts should prioritize the areas in southern Brazil where dolphins from three MUs overlap in their home ranges and where by-catch rates are reportedly higher.  相似文献   

11.
The biological and genetic structure of common bottlenose dolphins (Tursiops truncatus) that migrate seasonally near Japan remains largely unknown. We investigated the genetic and family structure in a group of 165 common bottlenose dolphins caught off the coast of Japan using mitochondrial DNA (mtDNA) and 20 microsatellite DNA markers. Phylogenetic analysis of the mtDNA control region sequences suggested that the dolphins were related more closely to oceanic types from Chinese waters than other geographic regions. The information on sex, sexual maturation and age together with the genetic markers revealed a strong likelihood for 37 familial relationships related mostly to maternity and an under‐representation of juvenile female offspring. The maternal dolphins had a similar offspring‐birth interval as the coastal types from North Atlantic Ocean, but a slightly younger first‐progeny age. The sex bias in the captured group was particularly marked towards an over‐representation of males among the young and immature dolphins, whereas the mature adults had an equal number of males and females. These results should be useful for future comparative biological, genetic and evolutionary investigations of bottlenose dolphins from the North Pacific Ocean with those from other regions.  相似文献   

12.
Interspecific aggression, similar to intergroup conspecific aggression, has been observed in a variety of taxa. The dominant group or individual is determined by multiple aggressive events and can be influenced by the size, age, or group size of the participating individuals. Interspecific aggression between Atlantic bottlenose (Tursiops truncatus) and spotted (Stenella frontalis) dolphins, both resident and sympatric to Little Bahama Bank, the Bahamas has been consistently observed for over two decades. However, it is unclear whether one species is more dominant and little is known about the factors that influence the progression of aggression. For this study, underwater video recordings of 32 aggressive encounters composed of 451 aggressive behavioural events were analysed over a 12‐yr period (1993–2004). These were used to describe the interspecific aggression observed and quantify which factors (the species and age class of the participants or the group size and behaviour of spotted dolphin groups) had the strongest impact on the progression and outcome of aggression. Over the long term, interspecific aggression was bidirectional with neither species being more dominant. During a single encounter, spotted dolphin group synchrony had the strongest impact on the dynamic of aggression, specifically impacting which group (1) initiated aggression, (2) the direction of aggression and (3) the occurrence of dynamic shifts or dominance reversals. This is the first study to quantify the dynamic of aggression for this population, to document bidirectional aggression and dynamic shifts during long‐term interspecific aggression in free‐ranging delphinids, and this study quantifies the role of synchrony during interspecific aggression using underwater observations.  相似文献   

13.
Determining genetic connectivity of bottlenose dolphin communities helps identify evolutionary mechanisms, such as environmental and social factors, that interact to shape dispersal in highly social marine mammals. Here, we expand on a localized study that found marked genetic differentiation among resident dolphins (Tursiops aduncus) in the Port Stephens embayment and adjacent coastal communities, to include four additional communities inhabiting different environment types along the New South Wales coast, Southeastern Australia. Analysis of the mitochondrial DNA control region and seven microsatellite loci suggest the nine communities may have originated from a single ancestral population that progressively colonised the coast in a southward direction. Gene flow among communities was predominately governed by habitat type. The two enclosed embayments showed the highest level of genetic differentiation from other communities, while genetic differentiation among coastal and open embayment communities generally followed a pattern of isolation by distance. Directional bias in recent migration rates was evident, with the centrally located Hunter coast communities consisting of individuals with mixed ancestry from the Northern, Southern and Port Stephens communities. Emigration from Port Stephens was substantially higher than in the opposite direction, indicating there may be social barriers to dispersal created by Port Stephens dolphins. Our results suggest that the scale of connectivity of bottlenose dolphin communities inhabiting heterogeneous environments is likely to be affected by local habitat adaptation. This has important implications for the management of communities exposed to increasing levels of anthropogenic disturbances, such as the intensive commercial dolphin-watching industry operating in Port Stephens.  相似文献   

14.
15.
Contact behaviour involving the pectoral fin has been documented in a number of dolphin species, and various explanations about its function have been offered. Pectoral fin contact can take a variety of forms, and involves a number of body parts and movements, likely differing depending upon social or ecological context. For this study, we compare the pectoral fin contact behaviour of two species of wild dolphins: Indo-Pacific bottlenose dolphins (Tursiops aduncus) from around Mikura Island, Japan, and Atlantic spotted dolphins (Stenella frontalis) from The Bahamas. The two study populations exhibit surprising similarity in the ways in which pectoral fin contacts are used, despite differences in species and environmental conditions at the two sites. Differences in contact rates for calves between the two sites suggest that calf-focused aggression from adult dolphins is more prevalent at Mikura than in The Bahamas. Our results suggest that pectoral fin contact behaviour seems to be driven primarily by social pressures, and may be similar in function to allogrooming described in primates.  相似文献   

16.
Recovery of cetacean carcasses provides data on levels of human‐caused mortality, but represents only a minimum count of impacts. Counts of stranded carcasses are negatively biased by factors that include at‐sea scavenging, sinking, drift away from land, stranding in locations where detection is unlikely, and natural removal from beaches due to wave and tidal action prior to detection. We estimate the fraction of carcasses recovered for a population of coastal bottlenose dolphins (Tursiops truncatus), using abundance and survival rate data to estimate annual deaths in the population. Observed stranding numbers are compared to expected deaths to estimate the fraction of carcasses recovered. For the California coastal population of bottlenose dolphins, we estimate the fraction of carcasses recovered to be 0.25 (95% CI = 0.20–0.33). During a 12 yr period, 327 animals (95% CI = 253–413) were expected to have died and been available for recovery, but only 83 carcasses attributed to this population were documented. Given the coastal habits of California coastal bottlenose dolphins, it is likely that carcass recovery rates of this population greatly exceed recovery rates of more pelagic dolphin species in the region.  相似文献   

17.
Shark nets placed along the coast of KwaZulu-Natal to protect bathers from shark attacks result in an incidental by-catch of bottlenose dolphins (Tursiops aduncus) at twice the level suggested by the IWC as the maximum sustainable capture rate for a cetacean population. Observational data reported the presence of at least two putative populations, one a seasonal migratory population moving into the KwaZulu-Natal area following the movement of sardines, and the other a coastal, apparently resident population. Some observations indicated possible further subdivision of the coastal population. We analysed nine microsatellite loci and 599 bps of the mitochondrial control region and found small but significant differentiation within the putative coastal population (FST = 0.022) separated north and south of Ifafa. There was weaker evidence for differentiation between the southern coastal and migratory populations (FST = 0.012). Genetic diversity was low for both types of markers in all populations, and the pattern of mtDNA variation was consistent with a founder event. Considering the high capture rate, the low level of genetic diversity, and the evidence of possible population differentiation along the coast, we suggest that particular care should be taken in managing the take from shark nets especially in the north coastal area of KZN where the population showed the higher degree of differentiation.  相似文献   

18.
In most mammals males usually disperse before breeding, while females remain in their natal group or area. However, in odontocete cetaceans behavioural and/or genetic evidence from populations of four species indicate that both males and females remain in their natal group or site. For coastal resident bottlenose dolphins field data suggest that both sexes are philopatric to their natal site. Assignment tests and analyses of relatedness based on microsatellite markers were used to investigate this hypothesis in resident bottlenose dolphins, Tursiops aduncus, from two small coastal populations of southeastern Australia. Mean corrected assignment and mean relatedness were higher for resident females than for resident males. Only 8% of resident females had a lower probability than average of being born locally compared to 33% of resident males. Our genetic data contradict the hypothesis of bisexual philopatry to natal site and suggest that these bottlenose dolphins are not unusual amongst mammals, with females being the more philopatric and males the more dispersing sex.  相似文献   

19.
Distinguishing discrete population units among continuously distributed coastal small cetaceans is challenging and crucial to conservation. We evaluated the utility of stable isotopes in assessing group membership in bottlenose dolphins (Tursiops truncatus) off west-central Florida by analyzing carbon, nitrogen, and sulfur isotope values (δ13C, δ15N, and δ34S) of tooth collagen from stranded dolphins. Individuals derived from three putative general population units: Sarasota Bay (SB), nearshore Gulf of Mexico (GULF), and offshore waters (OFF). Animals of known history (SB) served to ground truth the approach against animals of unknown history from the Gulf of Mexico (GULF, OFF). Dolphin groups differed significantly for each isotope. Average δ13C values from SB dolphins (−10.6‰) utilizing sea grass ecosystems differed from those of GULF (−11.9‰) and OFF (−11.9‰). Average δ15N values of GULF (12.7‰) and OFF (13.2‰) were higher than those of SB dolphins (11.9‰), consistent with differences in prey trophic levels. δ34S values showed definitive differences among SB (7.1‰), GULF (11.3‰), and OFF (16.5‰) dolphins. This is the first application of isotopes to population assignment of bottlenose dolphins in the Gulf of Mexico and results suggest that isotopes may provide a powerful tool in the conservation of small cetaceans.  相似文献   

20.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号