首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we use our quantitative (31)P NMR spin trapping methods, already developed for simple oxygen- and carbon-centered radicals, to understand the radical intermediates generated by enzymatic systems and more specifically lipoxygenases. Our methodology rests on the fact that free radicals react with the nitroxide phosphorus compound, 5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide (DIPPMPO), to form stable radical adducts, which are suitably detected and accurately quantified using (31)P NMR in the presence of a phosphorus containing internal standard. This system was thus applied to better understand the mechanism of enzymatic oxidation of linoleic acid by soybean lipoxygenases-1 (LOX). The total amount of radicals trapped by DIPPMPO was detected by (31)P NMR at different experimental conditions. In particular the effect of dioxygen concentration on the amount of radicals being trapped was studied. At low dioxygen concentration, a huge increase of radicals trapped was observed with respect to the amount of radicals being trapped at normal dioxygen concentrations.  相似文献   

2.
In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO–OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM.  相似文献   

3.
Chondrocytes have been shown to produce superoxide and hydrogen peroxide, suggesting possible formation of hydroxyl radical in these cells. In this study, we used electron spin resonance/spin trapping technique to detect hydroxyl radicals in chondrocytes. We found that hydroxyl radicals could be detected as α-hydroxyethyl spin trapped adduct of 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN) in chondrocytes stimulated with phorbol 12-myristate 13-acetate in the presence of ferrous ion. The formation of hydroxyl radical appears to be mediated by the transition metal-catalyzed Haber-Weiss reaction since no hydroxyl radical was detected in the absence of exogenous iron. The hydroxyl radical formation was inhibited by catalase but not by superoxide dismutase, suggesting that the hydrogen peroxide is the precursor. Cytokines, IL-1 and TNF enhanced the hydroxyl radical formation in phorbol 12-myristate 13-acetate treated chondrocytes. Interestingly, hydroxyl radical could be detected in unstimulated fresh human and rabbit cartilage tissue pieces in the presence of iron. These results suggest that the formation of hydroxyl radical in cartilage could play a role in cartilage matrix degradation.  相似文献   

4.
The acid phosphatase and cathepsin D activities and cAMP and cGMP levels in isolated perfused rat heart were investigated during various periods of ischaemic myocardial injury and postischaemic reperfusion. The effect of phosphodiesterase inhibitor--caffeine was also studied. Free acid hydrolases activities and cyclic nucleotide content were increased under 40 and 60 min ischemia and 20 min postischaemic reperfusion. Addition of 50 microM caffeine to perfusion solution after 30 min of ischaemia resulted in increase of cAMP level, cAMP/cGMP ratio, lysosomal bound activities of acid hydrolase and decrease of free acid hydrolase activities. The obtained results suggested that defect in cAMP synthesis might be present in lysosomal membranes labilization in cardiomyocytes injured during ischaemic conditions. Addition of such agents, as caffeine, which increased heart cAMP level, may be effective in lysosomal membranes stabilization under reversible heart ischaemia and reperfusion.  相似文献   

5.
Rat liver microsomal incubation systems containing the free radical spin trap, phenyl-t-butyl nitrone, as well as an NADPH generating system and [13C]CCl4 (90 atom % 13C) produce electron spin resonance spectra consistent with that expected for a trichloromethyl-phenyl-t-butyl nitrone adduct. This same spectrum is observed in a lipid extract of the liver from a rat orally administered [13C]CCl4 as well as in a solution of phenyl-t-butyl nitrone and [13C]CCl4 irradiated with ultraviolet light.  相似文献   

6.
Electron paramagnetic resonance spectroscopy has been applied to measure radical generation in the postischemic heart; however, there is controversy regarding the methods used and the conclusion as to whether radicals are generated. In order to resolve this controversy, direct and spin trapping measurements of the time course and mechanisms of radical generation were performed in isolated perfused rabbit hearts. In reperfused tissue, 3 prominent radical signals are observed: A, isotropic g = 2.004 suggestive of a semiquinone; B, anisotropic g parallel = 2.033 and g perpendicular = 2.005 suggestive of ROO.; and C, a triplet g = 2.000 and aN = 24 G suggestive of a nitrogen centered radical. B and C, however, are highly labile and disappear at temperatures probably encountered in some previous studies. In normally perfused hearts, A is observed with only small amounts of B and C. During ischemia, B and C increase reaching a maximum after 45 min while A decreases. On reflow with oxygenated perfusate all 3 signals increase. With varying duration of ischemia and reflow, peak signal intensities occurred after 15 s of reflow following 30 min of ischemia. Reperfusion with superoxide dismutase, deferoxamine, or mannitol abolished the reperfusion increase of B. Measurements performed with the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) demonstrated a similar time course of radical generation with prominent DMPO-OH and DMPO-R signals peaking between 10 and 20 s of reflow. Superoxide dismutase and deferoxamine also quenched these signals. Thus, .O2- derived .OH, R., and ROO. radicals are generated in postischemic myocardium. While the experimental techniques used can result in loss of intrinsic radicals and generation of extraneous radicals, with proper care and controls valid measurements of free radicals in biological tissues can be performed.  相似文献   

7.
Real-time monitoring of spin-trapped oxygen-derived free radicals released by the isolated ischemic and reperfused rat heart has been achieved by ESR analysis of the coronary effluents using continuous flow detection and high-speed acquisition techniques. Two nitrone spin traps 5,5-dimethyl pyrroline 1-oxide (Me2PnO) and 3,3,5,5-tetramethyl pyrroline 1-oxide (MePnO) have been separately perfused at a concentration of 40 mM during a sequence of 50 min of low-flow ischemia (1 ml/min) followed by 30 min of global ischemia and subsequent reperfusion at the control flow rate (14 ml/min). ESR spectra were sequentially obtained in 5-min or 30-s blocks during low-flow ischemia and reperfusion, respectively. 1. The results show the formation of OH. free radicals in the ischemic and reperfused heart, as demonstrated by the observation of Me2PnO-OH (aN = aH = 14.9 G; g = 2.0053) and Me4PnO-OH (aN = 15.2 G, aH = 16.8 G; g = 2.0055) spin adducts. There is no evidence of significant biological carbon-centered or peroxyl free radicals spin-adduct formation in the coronary effluents or in lipid extracts analyzed after reflow. 2. The OH. generation began 15-20 min after the onset of ischemia and was moderate, peaking at 30-40 min. During reperfusion, an intense formation of OH. spin adducts was observed, with a maximum at 30-60 s and a further gradual decrease over the following 2 min. 3. Cumulative integrated values of the amount of spin adducts released during the ischemic period show a Me2PnO-OH level fourfold greater than that of Me4PnO-OH. It was 2.5 times greater during reflow, reflecting slower kinetics with the more stable Me4PnO. 4. The original ESR detection technique developed in this study allows accurate real-time quantitative monitoring of the oxygen-derived free radicals generated during myocardial injury. It might provide a quick and reliable new means for assessing the efficacy of free-radical inhibitors.  相似文献   

8.
As reactive oxygen species are important for many fundamental biological processes in plants, specific and sensitive techniques for their detection in vivo are essential. In particular, the analysis of hydroxyl radical (OH*) formation in biological reactions has rarely been attempted. Here, it is shown that spin trapping electron paramagnetic resonance (EPR) spectroscopy allows the detection and quantitative estimation of OH* production in vivo in one single cucumber seedling root. It is possible to localize the OH* production site to the growth zone of the root by varying the position of the intact seedling inside the resonator cavity of the EPR spectrometer. Moreover, the demonstration of impaired OH* formation in the root of the Arabidopsis mutant rhd2 impaired in a superoxide-producing Nicotimamide adenine dinucleotide phosphate (NADPH) oxidase has been accomplished. Spin trapping EPR provides a valuable tool for analyzing the production of OH*in vivo with high resolution in small tissue samples.  相似文献   

9.
Postischemic myocardial contractile dysfunction is in part mediated by the burst of reactive oxygen species (ROS), which occurs with the reintroduction of oxygen. We hypothesized that tissue oxygen tension modulates this ROS burst at reperfusion. After 20 min of global ischemia, isolated rat hearts were reperfused with temperature-controlled (37.4 degrees C) Krebs-Henseleit buffer saturated with one of three different O2 concentrations (95, 20, or 2%) for the first 5 min of reperfusion and then changed to 95% O2. Additional hearts were loaded with 1) allopurinol (1 mM), a xanthine oxidase inhibitor, 2) diphenyleneiodonium (DPI; 1 microM), an NAD(P)H oxidase inhibitor, or 3) Tiron (10 mM), a superoxide scavenger, and were then reperfused with either 95 or 2% O2 for the first 5 min. ROS production and tissue oxygen tension were quantitated using electron paramagnetic resonance spectroscopy. Tissue oxygen tension was significantly higher in the 95% O2 group. However, the largest radical burst occurred in the 2% O2 reperfusion group (P < 0.001). Recovery of left ventricular (LV) contractile function and aconitase activity during reperfusion were inversely related to the burst of radical production and were significantly higher in hearts initially reperfused with 95% O2 (P < 0.001). Allopurinol, DPI, and Tiron reduced the burst of radical formation in the 2% O2 reperfusion groups (P < 0.05). Hypoxic reperfusion generates an increased ROS burst originating from multiple pathways. Recovery of LV function during reperfusion is inversely related to this oxygen radical burst, highlighting the importance of myocardial oxygen tension during initial reperfusion.  相似文献   

10.
To enhance the sensitivity of EPR spin trapping for radicals of limited reactivity, high concentrations (10-100 mM) of spin traps are routinely used. We noted that in contrast to results with other hydroxyl radical detection systems, superoxide dismutase (SOD) often increased the amount of hydroxyl radical-derived spin adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) produced by the reaction of hypoxanthine, xanthine oxidase and iron. One possible explanation for these results is that high DMPO concentrations (approximately 100 mM) inhibit dismutation of superoxide (O2.-) to hydrogen peroxide (H2O2). Therefore, we examined the effect of DMPO on O2.- dismutation to H2O2. Lumazine +/- 100 mM DMPO was placed in a Clark oxygen electrode following which xanthine oxidase was added. The amount of H2O2 formed in this reaction was determined by introducing catalase and measuring the amount of generated via O2.- dismutation as compared to direct divalent O2 reduction. In the presence of 100 mM DMPO, H2O2 generation decreased 43%. DMPO did not scavenge H2O2 nor alter the rate of O2.- production. The effect of DMPO was concentration-dependent with inhibition of H2O2 production observed at [DMPO] greater than 10 mM. Inhibition of H2O2 production by DMPO was not observed if SOD was present or if the rate of O2.- formation increased. The spin trap 2-methyl-2-nitroso-propane (MNP, 10 mM) also inhibited H2O2 formation (81%). However, alpha-phenyl-N-tert-butylnitrone (PBN, 10 mM), 3,3,5,5 tetramethyl-1-pyrroline N-oxide (M4PO, 100 mM), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN, 100 mM) had no effect. These data suggest that in experimental systems in which the rate of O2.- generation is low, formation of H2O2 and thus other H2O2-derived species (e.g., OH) may be inhibited by commonly used concentrations of some spin traps. Thus, under some experimental conditions spin traps may potentially prevent production of the very free radical species they are being used to detect.  相似文献   

11.
Radical production during the photolysis of deaerated aqueous alkaline solutions (pH 11) of some water-soluble porphyrins was investigated. Metal-free and metallo complexes of tetrakis (4-N-methylpyridyl)porphyrin (TMPyP) and tetra (4-sulphonatophenyl)porphyrin (TPPS4) were studied. Evidence for the formation of OH radicals during photolysis at 615, 545, 435, 408 and 335 nm of Fe(III) TPPS4 is presented. Fe(III) TMPyP, Mn(III) TPPS4 and Mn(III) TMPyP also gave OH radicals but only during photolysis at 335 nm. The method of spin trapping with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 4-pyridyl-1-oxide-N-tert-butylnitrone (POBN) combined with e.s.r. was used for the detection of OH, H and hydrated electrons. With the spin trap DMPO, photolysis generated DMPO-OH adducts under certain conditions but no DMPO-H adducts could be observed. With POBN, no POBN-H adducts were found. The formation of OH was confirmed by studying competition reactions for OH between the spin traps and OH scavengers (formate, isopropanol) and the concomitant formation of the CO-2 adduct and the (CH3)2COH adduct with both DMPO and POBN. The photochemical generation of OH radicals was pH dependent; at pH 7.5 no OH radicals could be detected. Photolysis (615-335 nm) of dicyanocomplexes of the Fe(III) porphyrins did not produce OH radicals. When corresponding Cu(II), Ni(II), Zn(II) and metal-free porphyrins were photolysed at 615 and 335 nm, no OH radicals could be spin trapped. These results tend to associate the well-known phenomenon of photoreduction of Fe(III) and Mn(III) porphyrins with the formation of OH radicals. This process is described mainly as the photoreduction of the metal ion by the ligand-bound hydroxyl ion via an intramolecular process.  相似文献   

12.
Direct spin trapping studies of protein radical adducts are limited as a consequence of the long rotational correlation times and consequent broadening of the ESR resonances. It can be difficult to determine both the nature and number of adduct species present. NMR detection of reduced spin adducts represents an alternate approach which, however, is subject to the limitations of lower sensitivity and a limited capability for isolating the resonances arising from the reduced adduct from other chemistry involving the spin trap. In the present study, we have utilized [methyl-13C(3)]-MNP for the detection and analysis of tyrosyl spin adducts formed as a result of exposure of equine myoglobin to hydrogen peroxide. The methyl-13C label allows high detection sensitivity in two dimensions, narrow line widths and most significantly, removal by dialysis of unreacted spin trap as well as any nonprotein derivatives that may form. For equine myoglobin, it is found that adduct formation involves a single residue-Tyr-103 and further that adduct formation occurs at the C-3 carbon of the amino acid. HMQC-NOESY experiments further revealed the proximity of the labeled methyl groups to both the three aromatic tyrosyl protons as well as the aromatic protons of the nearby Phe-106 residue.  相似文献   

13.
Aromatic hydroxylation from the reaction between hydroxyl radical and salicylate or its related compounds has been often utilized as a marker for the generation of hydroxyl radicals. We have investigated several technical aspects of applying this method to study hydroxyl radical production during cerebral ischemia and reperfusion using the hydroxylation of 4-hydroxybenzoic acid (4-HBA) to form 3,4-dihydroxybenzoic acid (3,4-DHBA). 4-HBA was administered to rats either through intravenous infusion, or by way of an in vivo microdialysis probe implanted in the brain. Dialysate containing 3,4-DHBA was collected and analyzed by HPLC with electrochemical detection. An endogenous compound was found to co-elute with 3,4 -DHBA but could be separated by varying the chromatographic conditions. Because of interrupted blood flow during cerebral ischemia and reperfusion, delivery of 4-HBA through the microdialysis probe is a preferred method to systemic administration such as intravenous infusion. It is concluded that the oxidation of 4-HBA to 3,4-DHBA can be a reliable and accurate indicator for the formation of hydroxyl radical in vivo if the experiments are well designed to avoid potential pitfalls associated with technical difficulties of the method.  相似文献   

14.
Aromatic hydroxylation from the reaction between hydroxyl radical and salicylate or its related compounds has been often utilized as a marker for the generation of hydroxyl radicals. We have investigated several technical aspects of applying this method to study hydroxyl radical production during cerebral ischemia and reperfusion using the hydroxylation of 4-hydroxybenzoic acid (4-HBA) to form 3,4-dihydroxybenzoic acid (3,4-DHBA). 4-HBA was administered to rats either through intravenous infusion, or by way of an in vivo microdialysis probe implanted in the brain. Dialysate containing 3,4-DHBA was collected and analyzed by HPLC with electrochemical detection. An endogenous compound was found to co-elute with 3,4 -DHBA but could be separated by varying the chromatographic conditions. Because of interrupted blood flow during cerebral ischemia and reperfusion, delivery of 4-HBA through the microdialysis probe is a preferred method to systemic administration such as intravenous infusion. It is concluded that the oxidation of 4-HBA to 3,4-DHBA can be a reliable and accurate indicator for the formation of hydroxyl radical in vivo if the experiments are well designed to avoid potential pitfalls associated with technical difficulties of the method.  相似文献   

15.
Isolated Langendorff-perfused rat hearts after 20 min of normoxic perfusion in the presence of 2.5 mM Ca++ and 11 mM glucose were subjected to 30 min of global normothermic ischemia followed by 30 min of normoxic reperfusion with the starting buffer. At the end of each perfusion condition, hearts were freeze-clamped and deproteinized by 0.6 M HClO4. Two-hundred microL of the neutralized tissue extracts were analyzed by a recently developed high-performance liquid chromatography (HPLC) method for the simultaneous determination of malondialdehyde (MDA), ascorbic acid, and adenine nucleotides. By means of this analytical technique, it was possible to demonstrate that MDA is undetectable in control hearts. In contrast, 30 min of ischemia induced a modest production of MDA (0.012 mumol/g dw), while a large amount of MDA (0.103 mumol/g dw) was observed in reperfused hearts. Values referring to ascorbic acid showed that the concentration of this antioxidant progressively decreased from 1.190 (control hearts) to 0.837 (ischemic hearts) and to 0.595 mumol/g dw (reperfused hearts). The overall conclusions of this study are that reperfusion induces an oxidative stress to the isolated myocardium, a decrease of ascorbate, and an increase of lipid peroxidation. Therefore, by means of a proper analytical method, MDA may represent a valid biochemical parameter to demonstrate the relationship between myocardial reperfusion and a detectable tissue damage.  相似文献   

16.
The effect of ischemic preconditioning on the free-radical state of isolated rat myocardium fixed by rapid freezing at the 25th min of normothermic total ischemia and the 3rd min of reperfusion was studied by the EPR method. It was shown that EPR spectra registered at -40 degrees C consist of two free-radical signals: of the semireduced forms of ubiquinone and flavine coynzymes. It was found that during ischemia and at the beginning of reperfusion, the preconditioning results in a narrowing of the spectra (as compared with control) due to an increase in the narrow ubisemiquinone EPR signal portion, and a decrease in the total concentration of free-radical centers: by 16% in the case of ischemia, and 23% in the case of reperfusion. It was concluded that in both cases the changes were due to a decrease in the concentration of myocardial flavosemiquinones as a result of ischemic preconditioning. We registered the microvawe power saturation curves for these two stages, which corresponded to control and ischemic preconditioning. In the case of ischemia these dependences had similar shapes; however, in the case of reperfusion they differ from each other due to changes in the relative intensities of the EPR signals from ubisemiquinone and flavosemiquinones in the integral myocardial free-radical spectra.  相似文献   

17.
An increased formation of oxygen free radicals in the reperfused rat small intestine is concluded from accumulations of oxidized glutathione, of thiobarbituric acid-reactive substances and of 4-hydroxynonenal. Xanthine oxidase inhibition prevented these biochemical changes. The histological and electronmicroscopic studies of intestinal sucosa showed significant structural deteriorations already at the end of the ischemic period obviously due to disturbances of cellular energy metabolism. The extent of dosage was increased during the reperfusion without qualitative changes of the pattern of structural dosage. The beneficial effects of oxypurinol on biochemical criteria which occurred already in the early phase of reperfusion were not reflected in significant morphological differences within the first hour of reperfusion. Differences of morphological findings between oxypurinol-treated and untreated animals could be observed after longer periods of reperfusion--during the regeneration of the tissue.  相似文献   

18.
The identification of subcellular fluxes of exchange of ATP, phosphocreatine (PCr) and Pi between mitochondria, cytosol and ATPases and pathways of energy transfer in a whole organ is a challenge specially in the myocardium where 50% of creatine kinases (CK) are found in close vicinity of ATP producing (mito-CK) and utilizing ( MM-bound CK) reactions. To dissect their contribution in cardiac energy transfer we recently developed a new experimental31P NMR spectroscopy approach. This led to identify three kinetically different subcellular CKs and to evidence experimentally the CK shuttle in a rat heart perfused in isovolumy. Here we show that a decreased energy demand alters energetic pathways : two CKs (cytosolic and MM-bound) functioning at equilibrium and a non mitochondrial ATPPi exchange was sufficient to describe NMR data. Mito-CK fluxes was not detected anymore. This confirms the dependence of energy pathways upon cardiac activity. Indeed the subcellular localization and activity of CKs may have important bioenergetic consequences for the in vivo control of respiration at high work: free ADP estimated from global CK equilibrium might not always adequately reflect its concentration at the ANT.  相似文献   

19.
Protein/phospholipid interactions in the solubilized mitochondrial ubihydroquinone:cytochrome-c oxidoreductase (bc1 complex) were studied by spin-label electron-spin resonance and by 31P-NMR spectroscopy. Spin-labelled phospholipids were employed to probe the relative binding affinities of a number of phospholipids with regard to the significance of phospholipids for the activity and stability of this multisubunit complex. The protein was titrated with spin-labelled cardiolipin (1,3-bisphosphatidyl-sn-glycerol) and with the spin-labelled analogues of PtdCho and PtdEtn, both of which have been shown recently to elicit a substantial increase in electron-transport activity [Sch?gger, H., Hagen, T., Roth, B., Brandt, U., Link, T. A. & von Jagow, G. (1990) Eur. J. Biochem. 190, 123-130]. A simplified distribution model showed that neutral phospholipids have much lower protein affinity than cardiolipin. In contrast to the transient weak lipid binding detected by spin-label electron-spin resonance, 31P NMR revealed a tightly bound cardiolipin portion, even after careful delipidation of the complex. Considerable line narrowing was observed after phospholipase A2 digestion of the bound cardiolipin, whereas addition of SDS resulted in complete release. Relative proportions and line widths of mobile and immobilized lipids were obtained by deconvoluting the partially overlapping signals. The current results are discussed with reference to similar findings with other mitochondrial membrane proteins. It is assumed that activation by neutral phospholipids reflects a generalized effect on the protein conformation. Cardiolipin binding is believed to be important for the structural integrity of the mitochondrial protein complexes.  相似文献   

20.
The first spin-trapping evidence for the formation of thiosulfate (S2O3-.) and sulfide (S-.) radical anions from the reactions of hydrogen peroxide with thiosulphate and sulphide ions, respectively, was presented by electron spin resonance (ESR) spectroscopy using 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS, 1a) as a spin-trap in aqueous solutions. From the facts that the short-lived radical anions, S2O3-. and S-., could be detected during the oxidation with H2O2, it is suggested that these radical anions may become one of the candidates for the toxicity of sulfide ion in the living body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号