首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) binds with high affinity and selectivity to the mu-opioid receptor. In the present study, [125I]endomorphin-2 has been used to characterize mu-opioid-binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin-2 (1 nM) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (K(d) = 18.79 +/- 1.13 nM, B(max) = 635 +/- 24 fmol/mg protein) and the other shows low affinity and higher capacity (K(d) = 7.67 +/- 0.81 microM, B(max) = 157 +/- 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin-2 binding site was [d-1-Nal3]morphiceptin > endomorphin-2 > [d-Phe3]morphiceptin > morphiceptin > [d-1-Nal3]endomorphin-2, indicating binding of these peptides to mu-opioid receptors. The uptake of 131I-labeled peptides administered intraperitoneally to tumor-bearing mice was also investigated. The highest accumulation in the tumor was observed for [d-1-Nal3)morphiceptin, which reached the value of 8.19 +/- 1.14% dose/g tissue.  相似文献   

2.
A functional assay, based on aequorin-derived luminescence triggered by receptor-mediated changes in Ca(2+) levels, was used to examine relative potency and efficacy of the micro-opioid receptor antagonists. A series of position 3- and 4-substituted endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2)) analogues containing D-3-(1-naphthyl)-alanine (D-1-Nal) or D-3-(2-naphthyl)-alanine (D-2-Nal), which were previously shown to reverse antinociception induced by endomorphin-2 in the in vivo hot-plate test in mice, was tested in the aequorin luminescence-based calcium assay to examine their micro-opioid antagonist potency in vitro. A recombinant mammalian cell line expressing the micro-opioid receptor together with a luminescent reporter protein, apoaequorin, was used in the study. The results obtained in this functional assay indicated that analogues with D-1-Nal or D-2-Nal substitutions in position 4 of endomorphin-2 are strong micro-opioid receptor antagonists, while those substituted in position 3 are partial agonists. Exceptional antagonist potency in the calcium assay was observed for [D-1-Nal(4)]endomorphin-2. The pA(2) value for this analogue was 7.95, compared to the value of 8.68 obtained for the universal, non-selective opioid antagonist of the alkaloid structure, naloxone. The obtained results were compared with the data from the hot-plate test in mice. In that in vivo assay [D-1-Nal(4)]endomorphin-2 was also the most potent analogue of the series.  相似文献   

3.
In the present study, we reported on the synthesis of two new mu-opioid peptide analogs, [D-1-Nal3]morphiceptin and [D-1-Nal4]-morphiceptin [1-Nal=3-(1-naphthyl)-alanine] which expressed receptor binding affinities at least at the level of the primary opioid ligands. The new analogs also labeled mu-opioid receptors on the cells of human breast cancer MCF-7 cell line with affinity much higher than that of endomorphins and morphiceptin, the well-known mu-selective opioid peptides. However, none of the tested peptides significantly decreased cell proliferation of MCF-7 cells.  相似文献   

4.
A series of position 4-substituted endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) analogs containing 3-(1-naphthyl)-alanine (1-Nal) or 3-(2-naphthyl)-alanine (2-Nal) in L- or D-configuration, was synthesized. The opioid activity profiles of these peptides were determined in the mu-opioid receptor representative binding assay and in the Guinea-Pig Ileum assay/Mouse Vas Deferens assay (GPI/MVD) bioassays in vitro, as well as in the mouse hot-plate test of analgesia in vivo. In the binding assay the affinity of all new analogs for the mu-opioid receptor was reduced compared with endomorphin-2. The two most potent analogs were [D-1-Nal(4)]- and [D-2-Nal4]endomorphin-2, with IC50 values 14 +/- 1.25 and 19 +/- 2.1 nM, respectively, compared with 1.9 +/- 0.21 nM for endomorphin-2. In the GPI assay these analogs were found to be weak antagonists and they were inactive in the MVD assay. The in vitro GPI assay results were in agreement with those obtained in the in vivo hot-plate test. Antinociception induced by endomorphin-2 was reversed by concomitant intracerebroventricula (i.c.v.) administration of [D-1-Nal4]- and [D-2-Nal4]-endomorphin-2, indicating that these analogs were mu-opioid antagonists. Their antagonist activity was compared with that of naloxone. At a dose 5 microg per animal naloxone almost completely inhibited antinociceptive action of endomorphin-2, while [D-1-Nal4]endomorphin-2 in about 46%.  相似文献   

5.
The morphiceptin-derived peptide [Dmt1, d-1-Nal3]morphiceptin, labeled mu-opioid receptor (MOP) with very high affinity and selectivity in the receptor binding assays. In the mouse hot plate test, [Dmt1, d-1-Nal3]morphiceptin given intracerebroventricularly (i.c.v.) produced profound supraspinal analgesia, being approximately 100-fold more potent than the endogenous MOP receptor ligand, endomorphin-2. The antinociceptive effect of this new analog lasted up to 120min. Thus, [Dmt1, d-1-Nal3]morphiceptin is an interesting and extraordinarily potent analgesic, raising the possibility of novel approaches in the design of clinically useful drugs for pain treatment.  相似文献   

6.
The ability of several mu-selective opioid peptides to activate G-proteins was measured in rat thalamus membrane preparations. The mu-selective ligands used in this study were three structurally related peptides, endomorphin-1, endomorphin-2 and morphiceptin, and their analogs modified in position 3 or 4 by introducing 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal). The results obtained for these peptides in [(35)S]GTPgammaS binding assay were compared with those obtained for a standard mu-opioid agonist DAMGO. [d-1-Nal(3)]Morphiceptin was more potent in G-protein activation (EC(50) value of 82.5+/-4.5 nM) than DAMGO (EC(50)=105+/-9 nM). [d-2-Nal(3)]Morphiceptin, as well as endomorphin-2 analogs substituted in position 4 by either d-1-Nal or d-2-Nal failed to stimulate [(35)S]GTPgammaS binding and were shown to be potent antagonists against DAMGO. It seems that the topographical location of the aromatic ring of position 3 and 4 amino acid residues can result in a completely different mode of action, producing either agonists or antagonists.  相似文献   

7.
Analogs of morphiceptin (Tyr-Pro-Phe-Pro-NH2), a mu-selective opioid receptor ligand, with position 3-modifications, including altered size, lipophilicity, and electronic character, while maintaining aromaticity were synthesized. The activity of the new analogs in in vitro assays and in in vivo hot-plate test of analgesia was compared and the results were consistent. [D-1-Nal3]Morphiceptin was the most potent analog of this series with a 26-fold increase in mu-opioid receptor affinity, a 15-fold potency increase in the GPI assay, and a significant potency increase in the hot-plate analgesic test, as compared with morphiceptin. [d-Qal3]Morphiceptin was found to be a weak antagonist in the GPI assay.  相似文献   

8.
The mu-opioid agonists endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2)) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2)) exhibit an extremely high selectivity for the mu-opioid receptor and thus represent a potential framework for modification into mu-antagonists. Here we report on the synthesis and biological evaluation of novel [d-2-Nal(4)]endomorphin-2 analogs, [Sar(2),d-2-Nal(4)]endomorphin-2 and [Dmt(1),Sar(2),d-2-Nal(4)]endomorphin-2 (Dmt=2'6'-dimethyltyrosine; Sar=N-methylglycine, sarcosine; d-2-Nal=3-(2-naphthyl)-d-alanine). [Dmt(1),Sar(2),d-2-Nal(4)]endomorphin-2 possessed very high affinity for the mu-opioid receptor (IC(50)=0.01+/-0.001 nM) and turned out to be a potent and extremely selective mu-opioid receptor antagonist, as judged by the in vitro aequorin luminescence-based calcium assay (pA(2)=9.19). However, in the in vivo hot plate test in mice this analog was less potent than our earlier mu-opioid receptor antagonist, [Dmt(1),d-2-Nal(4)]endomorphin-2 (antanal-2). The exceptional mu-opioid receptor in vitro activity and selectivity of [Dmt(1), Sar(2),d-2-Nal(4)]endomorphin-2 makes this analog a valuable pharmacological tool, but further modifications are needed to improve its in vivo profile.  相似文献   

9.
Significant angiotensin (Ang) (1-7) production occurs in kidney and effects on renal function have been observed. The present study was undertaken to investigate binding characteristics of the heptapeptide to Ang II receptors present in rat renal cortex. [125I]-Ang II binding to rat glomeruli membranes was analyzed in the presence of increasing concentrations of Ang II, Ang-(1-7), DUP 753 and PD 123319. Linearity of the Scatchard plot of the [125I]-Ang II specific binding to rat glomeruli membranes indicated a single population of receptors, with a Kd value of 0.7 +/- 0.1 nM and a Bmax of 198 +/- 0.04 fmol/mg protein. DUP 753, an specific AT1 receptor antagonist, totally displaced the specific binding of [125I]-radiolabelled hormone with a Ki of 15.8 +/- 0.9 nM, while no changes were observed in the presence of the selective AT2 receptor antagonist, PD 123319. The specific [125I]-Ang II binding to rat glomerular membranes was displaced by Ang-(1-7) with high affinity (Ki = 8.0 +/- 3.2 nM). We conclude that radioligand binding assays in the presence of selective Ang II antagonists DUP 753 and PD 123319 suggest the unique presence of AT1, receptors in rat glomeruli and a possible role in the control of the biological renal effects of Ang-(1-7).  相似文献   

10.
A Sidhu  S Kassis  J Kebabian  P H Fishman 《Biochemistry》1986,25(21):6695-6701
An iodinated compound, [125I]-8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin -7-ol, has been recently reported [Sidhu, A., & Kebabian, J.W. (1985) Eur. J. Pharmacol. 113, 437-440] to be a specific ligand for the D-1 dopamine receptor. Due to its high affinity and specific activity, this ligand was chosen for the biochemical characterization of the D-1 receptor. Alkylation of particulate fractions of rat caudate nucleus by N-ethylmaleimide (NEM) caused an inactivation of the D-1 receptor, as measured by diminished binding of the radioligand to the receptor. The inactivation of the receptor sites by NEM was rapid and irreversible, resulting in a 70% net loss of binding sites. On the basis of Scatchard analysis of binding to NEM-treated tissue, the loss in binding sites was due to a net decrease in the receptor number with a 2-fold decrease in the affinity of the receptor for the radioligand. Receptor occupancy by either a D-1 specific agonist or antagonist protected the ligand binding sites from NEM-mediated inactivation. NEM treatment of the receptor in the absence or presence of protective compound abolished the agonist high-affinity state of the receptor as well as membrane adenylate cyclase activity. The above-treated striatal membranes were fused with HeLa membranes and assayed for dopamine-stimulated adenylate cyclase activity. When the sources of D-1 receptors were from agonist-protected membranes, the receptors retained their ability to functionally couple to the HeLa adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Presence of dopamine D-2 receptors in human tumoral cell lines   总被引:2,自引:0,他引:2  
[125I] Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, [125I] iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.  相似文献   

12.
Solubilization of the D-1 dopamine receptor from rat striatum   总被引:1,自引:0,他引:1  
The D-1 dopamine receptor was extracted from rat striatal membranes with 0.7% sodium cholate and 1 M NaCl. Pretreatment of the membranes with a D-1 specific agonist, inclusion of crude phospholipids in the solubilization buffer, and subsequent removal of the detergent led to a maximal extraction of 48% of the receptor binding sites. The D-1 antagonist, [125I]SCH 23982, bound to single class of sites with a Kd of 1.8 nM and a Bmax of 1.65 pmol/mg protein. The solubilized receptors retained the ability to discriminate between active and inactive enantiomers of agonists and antagonists selective for the D-1 receptor.  相似文献   

13.
Salmeterol is a long-acting beta2-adrenergic receptor (beta 2AR) agonist used clinically to treat asthma. In addition to binding at the active agonist site, it has been proposed that salmeterol also binds with very high affinity at a second site, termed the "exosite", and that this exosite contributes to the long duration of action of salmeterol. To determine the position of the phenyl ring of the aralkyloxyalkyl side chain of salmeterol in the beta 2AR binding site, we designed and synthesized the agonist photoaffinity label [(125)I]iodoazidosalmeterol ([125I]IAS). In direct adenylyl cyclase activation, in effects on adenylyl cyclase after pretreatment of intact cells, and in guinea pig tracheal relaxation assays, IAS and the parent drug salmeterol behave essentially the same. Significantly, the photoreactive azide of IAS is positioned on the phenyl ring at the end of the molecule which is thought to be involved in exosite binding. Carrier-free radioiodinated [125I]IAS was used to photolabel epitope-tagged human beta 2AR in membranes prepared from stably transfected HEK 293 cells. Labeling with [(125)I]IAS was blocked by 10 microM (-)-alprenolol and inhibited by addition of GTP gamma S, and [125I]IAS migrated at the same position on an SDS-PAGE gel as the beta 2AR labeled by the antagonist photoaffinity label [125I]iodoazidobenzylpindolol ([125I]IABP). The labeled receptor was purified on a nickel affinity column and cleaved with factor Xa protease at a specific sequence in the large loop between transmembrane segments 5 and 6, yielding two peptides. While the control antagonist photoaffinity label [125I]IABP labeled both the large N-terminal fragment [containing transmembranes (TMs) 1-5] and the smaller C-terminal fragment (containing TMs 6 and 7), essentially all of the [125I]IAS labeling was on the smaller C-terminal peptide containing TMs 6 and 7. This direct biochemical evidence demonstrates that when salmeterol binds to the receptor, its hydrophobic aryloxyalkyl tail is positioned near TM 6 and/or TM 7. A model of IAS binding to the beta 2AR is proposed.  相似文献   

14.
The radiolabeled agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) and antagonist [125I]iodopindolol ([125I]IPIN) were used to investigate the properties of beta-adrenergic receptors on membranes prepared from L6 myoblasts and S49 lymphoma cells. The high affinity binding of (-)-[3H]HBI to membranes prepared from L6 myoblasts was stereoselectively inhibited by the active isomers of isoproterenol and propranolol. The density of receptors determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. The binding of (-)-[3H]HBI was inhibited by guanine nucleotides, suggesting an agonist-mediated association of the receptor with a guanine nucleotide-binding protein, presumably the stimulatory guanine nucleotide-binding protein (Ns) of adenylate cyclase. Results obtained in studies with membranes prepared from wild-type S49 lymphoma cells and the adenylate cyclase-deficient variant (cyc-) were similar to those obtained in experiments carried out with membranes prepared from L6 myoblasts. Thus, the high affinity binding of (-)-[3H]HBI to membranes prepared from wild-type and cyc- S49 lymphoma cells was stereoselectively inhibited by the active isomers of isoproterenol and propranolol, and was inhibited by GTP. Moreover, the density of sites determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. These results suggest either that cyc- cells contain a partially functional Ns, or alternatively, that the inhibitory guanine nucleotide-binding protein (Ni) is capable of interacting with beta-adrenergic receptors.  相似文献   

15.
Iododesethyl tamoxifen aziridine (I-Tam-Az), an analog of the estrogen receptor-affinity label tamoxifen aziridine (Tam-Az) in which the ethyl group has been replaced by an iodine, has been prepared by two routes: (a) metallation of a bromotriarylethylene system, followed by reaction with iodine, and aziridinylation, and (b) direct iodination of a trimethylstannyl triarylethylene system that is the immediate precursor of I-Tam-Az. The latter method can be used to prepare [125I]I-Tam-Az rapidly and in good yield, both at carrier-added and no-carrier-added levels; specific activities greater than 200 Ci/mmol have been obtained. In competitive radiometric binding assays with the estrogen receptor, I-Tam-Az has an apparent affinity of ca. 20%, equivalent to that of Tam-Az. It also undergoes rapid and selective time-dependent, irreversible binding to the estrogen receptor. [125I]I-Tam-Az reacts covalently with estrogen receptor in uterine cytosol preparations; its attachment is rapid and efficient, but somewhat less selective than that of Tam-Az. Estrogen receptor in intact MCF-7 human breast cancer cells can also be labeled with [125I]I-Tam-Az, and autoradiographic analysis of salt extracts of labeled nuclear estrogen receptor on SDS-polyacrylamide slab gels shows highly selective labeling of a 65K protein. [125I]I-Tam-Az is an efficient, selective affinity label for the estrogen receptor, available at high specific activity, and should be useful in studies on estrogen receptor structure, dynamics, and chromatin interactions.  相似文献   

16.
The mechanism of agonist-induced desensitization of the D-2 dopamine receptor in the intermediate lobe (IL) of the rat pituitary gland was investigated. Exposure of neurointermediate lobe to 60 microM (-)apomorphine (APO) for 60 min altered the binding of [125I]-N-(p-aminophenethyl)spiperone (NAPS), a D-2 receptor-specific ligand. The capacity of the tissue to bind the ligand (Bmax) was not significantly altered by the exposure to (-)APO but the affinity for [125I]NAPS was decreased 3.6-fold in (-)APO-exposed tissue. The molar potency of YM-09151-2, a D-2 receptor-specific antagonist, showed a minimal difference between in control and (-)-APO-exposed tissue. However, the molar potency of (-)APO towards the D-2 receptor was diminished. The loss of [125I]NAPS binding in (-)APO-exposed tissue was reversed by the addition of guanyl nucleotide. These data suggest that exposure to agonist causes a persistent occupancy of the high affinity state of the receptor. Exposure to (-)APO had no effect on either basal or forskolin-activated adenylate cyclase activity of the intermediate lobe. However, the inhibitory effect of (-)APO upon adenylate cyclase activity of IL homogenates was diminished when the tissue was exposed to (-)APO before homogenization. Furthermore, the ability of GTP but not 5'-guanylyl imidodiphosphate [Gpp(NH)p] to inhibit enzyme activity diminished in the (-)APO-exposed tissue. These data suggest that an agonist-induced desensitization of D-2 receptor in rat IL is thought to occur by uncoupling the receptor from the inhibitory guanyl nucleotide binding protein (Gi) or potentiating the hydrolysis of GTP by Gi.  相似文献   

17.
Both [D-Ala2,Glu4]Deltorphin and [D-Ala2,4'-I-Phe3,Glu4]Deltorphin are highly selective ligands for delta, relative to mu, opioid receptors. Radiolabeled [D-Ala2, 4'-125I-Phe3,Glu4]Deltorphin ([125I]Deltorphin) was prepared with a specific activity of 2200 Ci/mmol from [D-Ala2, 4'-NH2-Phe3, Glu4]Deltorphin through a diazonium salt intermediate. The inhibition of [125I]Deltorphin binding to rat brain membranes by ligands selective for mu, delta, and kappa opioid receptors is consistent with binding by the radioligand to a single site having the properties of a delta opioid receptor. The results of these studies are in good agreement with those obtained by structurally different delta opioid receptor ligands. The similarity between the delta receptor site labeled by [125I]Deltorphin and those labeled by other delta receptor agonists, in contrast to differences seen by in vivo studies of their analgesic effects, is discussed.  相似文献   

18.
1. A series of novel opiate ligands based upon 6α-naloxamine have been examined in opioid receptor binding assays.2. Coupling an ethylamine spacer alone to 6-α-naloxamine gave a compound with relatively poor affinity for mu opioid receptors compared to naloxone, although it retained high affinity for kappa1 opioid receptors. Coupling a benzoyl group significantly increased the affinity. The presence at the 4-position of the benzoyl moiety of an amino-(NalAmiBen) or an azido-substituent (NalAziBen) did not significantly effect the affinity at mu receptors. However, iodinating the benzoyl moiety at the 3-position increased the affinity of the derivatives.3. Two compounds were radiolabeled and evaluated in receptor binding assays. Both radioligands labeled sites in CHO cells stably transfected with the mouse MOR-1 clone. The amino coupound [125I]NalAmiBen and the azido derivative [125I]NalAziBen reversibly bound to membranes from CHO cells transfected with MOR-1 with high affinity in the dark. Exposure of [125I]NalAmiBen to UV did not alter the reversibility of binding, but exposure of [125I]NalAziBen to UV light led to the covalent coupling of the radioligand to the receptor. When run on SDS-PAGE, [125I]NalAziBen binding showed a band at approximately 70–80 kDa. A control corresponding to nonspecific binding failed to reveal any labeling. No bands were observed from membranes labeled with [125I]NalAmiBen.  相似文献   

19.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) exert their calciotropic activities by binding to a specific seven-transmembrane-helix-containing G protein-coupled receptor mainly located in bone and kidney cells. In order to map in detail the nature of hormone-receptor interaction, we are employing 'photoaffinity scanning' of the bimolecular interface. To this end, we have developed photoreactive benzophenone (BP)-containing PTH analogs which can be specifically and efficiently cross-linked to the human (h) PTH/PTHrP receptor. In this report, we describe the photocross-linking of a BP-containing PTH antagonist, [Nle8,18,D-2-Nal12,Lys13(epsilon-BP),2-Nal23,Tyr34]bPT H(7-34)NH2 (ANT) to the recombinant hPTH/PTHrP receptor stably expressed in human embryonic kidney cells (HEK-293, clone C-21). This photoreactive antagonist has high affinity for the hPTH/PTHrP receptor and inhibits agonist-induced cyclase activity and intracellular calcium release. The photo-induced cross-linking of the radioiodinated antagonist (125I-ANT) to the recombinant hPTH/PTHrP receptor followed by SDS-PAGE analysis reveals a single radiolabeled band of approximately 85kDa, similar to that observed after cross-linking of a radioiodinated BP-containing agonist. The formation of this covalent 125I-ANT - hPTH/PTHrP receptor conjugate is competed dose-dependently by a variety of unlabelled PTH- and PTHrP-derived agonists and antagonists. This is the first report of a specific and efficient photocross-linking of a radioiodinated PTH antagonist to the hPTH/PTHrP receptor. Therefore, it provides the opportunity to study directly the nature of the bimolecular interaction of PTH antagonist with the hPTH/PTHrP receptor.  相似文献   

20.
Binding experiments performed with [(125)I]-NKA allowed us to demonstrate the presence of "septide-sensitive" specific binding sites on membranes from rat CHO cells transfected with the NK(1) receptor cDNA (CHO-rat-NK1 cells), human astrocytoma U373 MG, or mouse cortical astrocytes, cells which express NK(1) but neither NK(2) nor NK(3) receptors. In all cases, [(125)I]-NKA was specifically bound with high affinity (2 to 5 nM) to a single population of sites. In the three preparations, pharmacological characteristics of [(125)I]-NKA binding sites were notably different from those of classical NK(1) binding sites selectively labelled with [(125)I]-BHSP. Indeed, the endogenous tachykinins NKA, NPK, and NKB and the septide-like compounds such as septide, SP(6-11), ALIE-124, [Apa(9-10)]SP, or [Lys(5)]NKA(4-10) had a much higher affinity for [(125)I]-NKA than [(125)I]-BHSP binding sites. Interestingly, differences were also found in the ratio of B(max) values for [(125)I]-NKA and [(125)I]-BHSP specific bindings from one tissue to another. These latter observations suggest that these two types of NK(1) binding sites are present on distinct NK(1) receptor isoforms (or conformers). Finally, while several tachykinins and tachykinin-related compounds stimulated cAMP formation or increased inositol phosphate accumulation in CHO-rat-NK1 cells, these compounds only increased the accumulation of inositol phosphates in the two other preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号