首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary DNA sequence divergence measurements indicate thatStrongylocentrotus franciscanus is more distinct fromS. purpuratus andS. drobachiensis than these two species are from each other, in agreement with paleontological and morphological evidence. The evolutionary divergence of several classes of expressed DNA sequences was compared with that of total single-copy DNA. BetweenS. franciscanus andS. purpuratus the divergence of cDNA made from gastrula cytoplasmic poly(A)+ RNA is about half that of total single-copy DNA. Similar results were obtained for cDNA made from unfertilized egg poly(A)+ RNA. In contrast, sequences expressed in gastrula nuclear RNA have diverged almost as much as total single-copy DNA.  相似文献   

2.
3.
Intraspecific and interspecific genetic variation in Drosophila   总被引:1,自引:0,他引:1  
J R Powell  A Caccone 《Génome》1989,31(1):233-238
Utilizing the technique of DNA-DNA hybridization, we have characterized the degree of genetic variability in single-copy DNA both within and between several species of Drosophila. The results of intraspecific variation studies indicate considerable variation both for levels of nucleotide heterozygosity (estimated to be over 2%) as well as for insertions-deletions. Interspecific studies confirm this great deal of variability and further establish an extreme heterogeneity within Drosophila genomes for rates of divergence. This heterogeneity is much more extreme than that seen between exons and introns. The degree of single-copy DNA divergence generally supports phylogenetic affinities deduced from more traditional methods. However, exceptions occur where single-copy DNA divergence is not correlated with other properties such as degree of chromosomal differentiation, morphology, or ability to form interspecific hybrids. We argue that single-copy DNA divergence as measured by DNA-DNA hybridization is an accurate indicator of phylogenetic relationships and therefore sheds light on the evolution of other biological properties. Many, if not most, evolutionary tests require an accurate phylogeny of the group being studied and DNA, because of the high information content inherent within the molecule, offers the best hope of deriving true phylogenies.  相似文献   

4.
Coinciding with a period in evolution when monotremes, marsupials, and eutherians diverged from a common ancestor, a proto-beta-globin gene duplicated, producing the progenitors of mammalian embryonic and adult beta-like globin genes. To determine whether monotremes contain orthologues of these genes and to further investigate the evolutionary relationships of monotremes, marsupials, and eutherians, we have determined the complete DNA sequence of an echidna (Tachyglossus aculeatus) beta-like globin gene. Conceptual translation of the gene and sequence comparisons with eutherian and marsupial beta-like globin genes and echidna adult beta-globin indicate that the gene is adult expressed. Phylogenetic analyses do not clearly resolve the branching pattern of mammalian beta-like globin gene lineages and it is therefore uncertain whether monotremes have orthologues of the embryonic beta-like globin genes of marsupials and eutherians. Four models are proposed that provide a framework for interpreting further studies on the evolution of beta-like globin genes in the context of the evolution of monotremes, marsupials, and eutherians.  相似文献   

5.
Molecular evolution of human visual pigment genes   总被引:9,自引:1,他引:8  
By comparing the published DNA sequences for (a) the genes encoding the human visual color pigments (red, green, and blue) with (b) the genes encoding human, bovine, and Drosophila rhodopsins, a phylogenetic tree for the mammalian pigment genes has been constructed. This evolutionary tree shows that the common ancestor of the visual color pigment genes diverged first from that of the rhodopsin genes; then the common ancestor of the red and green pigment genes and the ancestor of the blue pigment gene diverged; and finally the red and green pigment genes diverged from each other much more recently. Nucleotide substitutions in the rhodopsin genes are best explained by the neutral theory of molecular evolution. However, important functional adaptations seem to have occurred twice during the evolution of the color pigment genes in humans: first, to the common ancestor of the three color pigment genes after its divergence from the ancestor of the rhodopsin gene and, second, to the ancestor of the red pigment gene after its divergence from that of the green pigment gene.  相似文献   

6.
7.
Hunt JA  Carson HL 《Genetics》1983,104(2):353-364
Four species of the Hawaiian Drosophila planitibia subgroup which are homosequential in their polytene chromosomes are resident on the islands of Molokai, Maui and Hawaii. Comparisons of DNA sequence divergence in these four have been made by hybridization of total single-copy radiolabeled tracer DNA from each of the species with excess nonlabeled DNA from each of the species, and measurement of the reduction of average melting temperature (DeltaTma) was made in 2.4 m tetraethyl ammonium chloride. The mean DeltaTma between either D. heteroneura or D. silvestris and either D. planitibia or D. differens was found to be 1.06 degrees , whereas the difference between D. planitibia and D. differens in 0.65 degrees and between D. heteroneura and D. silvestris is 0.75 degrees . These measurements taken together with the distances calculated from isozyme studies, chromosomal relationships, as well as the island locations indicate that the ancestor of these species diverged from other planitibia subgroup flies on Molokai [age 1.8 million years before present, (My BP)]. We hypothesize that one line became the present-day D. differens and diverged probably at the time of formation of East Maui (0.8-1 My BP) to form the species D. planitibia. Flies from the other line migrated to Hawaii soon after its formation (0.7 My BP) to form the two species D. heteroneura and D. silvestris.  相似文献   

8.
Four sibling species from the melanogaster subgroup (Drosophila melanogaster, D. simulans, D. sechellia, and D. mauritiana) were studied for genetic divergence, by high-resolution two-dimensional protein electrophoresis (2DE) coupled with ultrasensitive silver staining. A total of eight tissues from larval and adult developmental stages representing both gonadal (germ-line) and nongonadal (somatic) tissues were analyzed for protein divergence between species. Close to 400 polypeptides (protein spots) were scored from each tissue and species, and protein divergence was measured on the basis of qualitative differences (presence/absence) of protein spots in pairwise species comparisons. The observed levels of genic divergence varied among tissues and among species. When larval hemolymph proteins (which are known to be highly polymorphic) were excluded, there was no evidence to suggest that either the larval or adult-stage proteins, as a whole, are more diverged than the other; variation between different tissues rather than between developmental stages appears to be the most significant factor affecting genetic divergence between species. The reproductive tissue (testis and accessory gland) showed more divergence than did the nonreproductive tissue; D. melanogaster testis (from both larvae and adult males) showed the highest level of divergence. In view of the previous observation that D. simulans, D. mauritiana, and D. sechellia show similar but significantly less reproductive isolation from each other than from D. melanogaster, the present results suggest a correlation between the levels of reproductive-tract-protein divergence and the degree of reproductive isolation in these species.  相似文献   

9.
To study the rate and pattern of nucleotide substitution in mitochondrial DNA (mtDNA), we cloned and sequenced a 975-bp segment of mtDNA from Drosophila melanogaster, D. simulans, and D. mauritiana containing the genes for three transfer RNAs and parts of two protein- coding genes, ND2 and COI. Statistical analysis of synonymous substitutions revealed a predominance of transitions over transversions among the three species, a finding differing from previous results obtained from a comparison of D. melanogaster and D. yakuba. The number of transitions observed was nearly the same for each species comparison, including D. yakuba, despite the differences in divergence times. However, transversions seemed to increase steadily with increasing divergence time. By contrast, nonsynonymous substitutions in the ND2 gene showed a predominance of transversions over transitions. Most transversions were between A and T and seemed to be due to some kind of mutational bias to which the A + T-rich mtDNA of Drosophila species may be subject. The overall rate of nucleotide substitution in Drosophila mtDNA appears to be slightly faster (approximately 1.4 times) than that of the Adh gene. This contrasts with the result obtained for mammals, in which the mtDNA evolves approximately 10 times faster than single-copy nuclear DNA. We have also shown that the start codon of the COI gene is GTGA in D. simulans and GTAA in D. mauritiana. These codons are different from that of D. melanogaster (ATAA).   相似文献   

10.
Sex‐dependent gene expression is likely an important genomic mechanism that allows sex‐specific adaptation to environmental changes. Among Drosophila species, sex‐biased genes display remarkably consistent evolutionary patterns; male‐biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex‐biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex‐specific selection and the evolution of sex‐biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male‐biased genes, there was no overrepresentation of X‐linked genes in males. By contrast, X‐linked divergence was elevated in females, especially for female‐biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro‐ and micro‐ecological spatial scales.  相似文献   

11.
A. Caccone  G. D. Amato    J. R. Powell 《Genetics》1988,118(4):671-683
Levels of DNA divergence among the eight species of the Drosophila melanogaster subgroup and D. takahashii have been determined using the technique of DNA-DNA hybridization. Two types of DNA were used: single-copy nuclear DNA (scnDNA) and mitochondrial DNA (mtDNA). The major findings are: (1) A phylogeny has been derived for the group based on scnDNA which is congruent with chromosomal data, morphology, and behavior. The three homosequential species, simulans, sechellia, and mauritiana, are very closely related; the scnDNA divergence indicate the two island species are a monophyletic group. (2) The rates of change of scnDNA and mtDNA are not greatly different; if anything scnDNA evolves faster than mtDNA. (3) The rates of scnDNA evolution are not closely correlated to chromosomal (inversion) evolution. (4) The Drosophila genome appears to consist of two distinct classes of scnDNA with respect to rate of evolutionary change, a very rapidly evolving fraction and a relatively conservative fraction. (5) The absolute rate of change was estimated to be at least 1.7% nucleotide substitution per one million years. (6) DNA distance estimates based on restriction site variation are correlated with distances based on DNA-DNA hybridization, although the correlation is not very strong.  相似文献   

12.
Summary Comparisons of the sequence divergence of three species of Hawaiian Drosophila have been made by hybridization of single-copy tracer DNA of each of the species with driver DNA from each species, and measurement of the average melting temperature (Tma) in a chaotropic solvent (2.4 M tetraethylammonium chloride) which minimizes differences due to base composition. Correction was made for the length of hybrid duplex regions to obtain the reduction in thermal stability due to divergence.An accuracy of ± 0.2°C was achieved and the mean reduction in Tm for hybridization betweenD. heteroneura andD. silvestris (found only on the island of Hawaii) was 0.55°C and betweenD. picticornis, found only on the island of Kauai, and the other two species was 2.13°C. The rate of DNA change is estimated to be between 0.2 and 0.4%/My by assuming that theD. heteroneura-D. silvestris divergence occurred 0.8 My ago and the divergence between these species andD. picticornis between 4 and 6 My ago.The general single copy DNA sequence divergence appears to be very much greater than the minimal coding region sequence divergence previously estimated from allozyme studies.  相似文献   

13.
14.
The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species’ microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ‐proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation.  相似文献   

15.
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically.  相似文献   

16.
M Treier  C Pfeifle    D Tautz 《The EMBO journal》1989,8(5):1517-1525
We have cloned and sequenced a large portion of the hunchback (hb) locus from Drosophila virilis. Comparison with the Drosophila melanogaster hb sequence shows multiple strong homologies in the upstream and downstream regions of the gene, including most of the known functional parts. The coding sequence is highly conserved within the presumptive DNA-binding finger regions, but more diverged outside of them. The regions of high divergence are correlated with regions which are rich in short direct repeats (regions of high 'cryptic simplicity'), suggesting a significant influence of slippage-like mechanisms in the evolutionary divergence of the two genes. Staining of early D.virilis embryos with an hb antibody reveals conserved and divergent features of the spatial expression pattern at blastoderm stage. It appears that the basic expression pattern, which serves as the gap gene function of hb, is conserved, while certain secondary expression patterns, which have separate functions for the segmentation process, are partly diverged. Thus, both slippage driven mutations in the coding region, which are likely to occur at higher rates than point mutations and the evolutionary divergence of secondary expression patterns may contribute to the evolution of regulatory genes.  相似文献   

17.
Unraveling how regulatory divergence contributes to species differences and adaptation requires identifying functional variants from among millions of genetic differences. Analysis of allelic imbalance (AI) reveals functional genetic differences in cis regulation and has demonstrated differences in cis regulation within and between species. Regulatory mechanisms are often highly conserved, yet differences between species in gene expression are extensive. What evolutionary forces explain widespread divergence in cis regulation? AI was assessed in Drosophila melanogaster-Drosophila simulans hybrid female heads using RNA-seq technology. Mapping bias was virtually eliminated by using genotype-specific references. Allele representation in DNA sequencing was used as a prior in a novel Bayesian model for the estimation of AI in RNA. Cis regulatory divergence was common in the organs and tissues of the head with 41% of genes analyzed showing significant AI. Using existing population genomic data, the relationship between AI and patterns of sequence evolution was examined. Evidence of positive selection was found in 30% of cis regulatory divergent genes. Genes involved in defense, RNAi/RISC complex genes, and those that are sex regulated are enriched among adaptively evolving cis regulatory divergent genes. For genes in these groups, adaptive evolution may play a role in regulatory divergence between species. However, there is no evidence that adaptive evolution drives most of the cis regulatory divergence that is observed. The majority of genes showed patterns consistent with stabilizing selection and neutral evolutionary processes.  相似文献   

18.
19.
In 1828, Karl von Baer proposed a set of four evolutionary "laws" pertaining to embryological development. According to von Baer's third law, young embryos from different species are relatively undifferentiated and resemble one another but as development proceeds, distinguishing features of the species begin to appear and embryos of different species progressively diverge from one another. An expansion of this law, called "the hourglass model," has been proposed independently by Denis Duboule and Rudolf Raff in the 1990s. According to the hourglass model, ontogeny is characterized by a starting point at which different taxa differ markedly from one another, followed by a stage of reduced intertaxonomic variability (the phylotypic stage), and ending in a von-Baer-like progressive divergence among the taxa. A possible "translation" of the hourglass model into molecular terminology would suggest that orthologs expressed in stages described by the tapered part of the hourglass should resemble one another more than orthologs expressed in the expansive parts that precede or succeed the phylotypic stage. We tested this hypothesis using 1,585 mouse genes expressed during 26 embryonic stages, and their human orthologs. Evolutionary divergence was estimated at different embryonic stages by calculating pairwise distances between corresponding orthologous proteins from mouse and human. Two independent datasets were used. One dataset contained genes that are expressed solely in a single developmental stage; the second was made of genes expressed at different developmental stages. In the second dataset the genes were classified according to their earliest stage of expression. We fitted second order polynomials to the two datasets. The two polynomials displayed minima as expected from the hourglass model. The molecular results suggest, albeit weakly, that a phylotypic stage (or period) indeed exists. Its temporal location, sometimes between the first-somites stage and the formation of the posterior neuropore, was in approximate agreement with the morphologically defined phylotypic stage. The molecular evidence for the later parts of the hourglass model, i.e., for von Baer's third law, was stronger than that for the earlier parts.  相似文献   

20.
Matsuo T 《Genetics》2008,178(2):1061-1072
Genes encoding odorant-binding protein (OBP) form a large family in an insect genome. Two OBP genes, Obp57d and Obp57e, were previously identified to be involved in host-plant recognition in Drosophila sechellia. Here, by comparing the genomic sequences at the Obp57d/e locus from 27 Drosophila species, we found large differences in gene number between species. Phylogenetic analysis revealed that Obp57d and Obp57e in the D. melanogaster species group arose by gene duplication of an ancestral OBP gene that remains single in the obscura species group. Further gain and loss of OBP genes were observed in several lineages in the melanogaster group. Site-specific analysis of evolutionary rate suggests that Obp57d and Obp57e have functionally diverged from each other. Thus, there are two classes of gene number differences in the Obp57d/e region: the difference of the genes that have functionally diverged from each other and the difference of the genes that appear to be functionally identical. Our analyses demonstrate that these two classes of differences can be distinguished by comparisons of many genomic sequences from closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号