首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inducible glucose transport system of the yeast, Kluyveromyces lactis, was studied using the nonmetabolizeable glucose analogue, 6-deoxyglucose. The free sugar analogue is transported into glucose-grown cells via a facilitated diffusion system as determined by the nonconcentrative uptake of the sugar analogue, by the failure of energy inhibitors to reduce the rate of transport and by exchange diffusion across the membrane. Free 6-deoxyglucose is also transported into succinate-grown cells passively. Induction experiments revealed that 6-deoxyglucose serves as a gratuitous inducer for the glucose transport system in this yeast.  相似文献   

2.
Under aerobic conditions 2-deoxy-d-glucose was accumulated in Kluyveromyces marxianus mainly in a phosphorylated form. During sugar uptake both ATP, polyphosphate and orthophosphate levels decreased. Under anaerobic conditions considerably less sugar was taken up. The intracellular free sugar concentration did not exceed the medium concentration, whereas sugar phosphorylation leveled off at about 3 μmol/g yeast. In response to anaerobic 2-deoxy-d-glucose uptake only ATP and polyphosphate appeared to decrease. Within the experimental error sugar phosphorylation was counterbalanced by the polyphosphate decrease. Pulse labeling experiments revealed transport-associated phosphorylation under these anaerobic conditions, Further, kinetic studies on permeabilized cells showed that cytoplasmic ATP could not be the phosphoryl donor in this transport-associated phosphorylation. These results confirm and extend previous observations, indicating that polyphosphate plays a crucial role in 2-deoxy-d-glucose transport in Kluyveromyces marxianus.  相似文献   

3.
During the last decades a considerable amount of research has been focused on cancer. A number of genetic and signaling defects have been identified. This has allowed the design and screening of a number of anti-tumor drugs for therapeutic use. One of the main challenges of anti-cancer therapy is to specifically target these drugs to malignant cells. Recently, tumor cell metabolism has been considered as a possible target for cancer therapy. It is widely accepted that tumors display an enhanced glycolytic activity and oxidative phosphorylation down-regulation (Warburg effect). Therefore, it seems reasonable that disruption of glycolysis might be a promising candidate for specific anti-cancer therapy.  相似文献   

4.
5.
The Crabtree effect (inhibition of respiration by glycolysis) is observed in cells with approximately equal glycolytic and respiratory capacities for ATP synthesis. Addition of glucose to aerobic suspensions of glucose-starved cells (Sarcoma 180 ascites tumor cells) causes a burst of respiration and lactate production due to ATP utilization for glucose phosphorylation by hexokinase and phosphofructokinase. This burst of activity is followed by inhibition of both respiration and glycolysis, the former to below the value before glucose addition (Crabtree effect). Both the respiratory rate and the glycolytic flux appear to be regulated by the cytosolic [ATP][ADP][Pi] albeit by completely different mechanisms. Respiration is regulated by the free energy of hydrolysis of ATP, such that the rate increases as the [ATP][ADP][Pi] decreases and decreases as the [ATP][ADP][Pi] increases. The regulatory enzymes of glycolysis are activated by ADP (AMP) and Pi and inhibited by ATP. Thus both respiration and glycolysis increase or decrease as the [ATP][ADP][Pi] decreases or increases. The parallel regulation of both ATP-producing pathways by this common metabolite ratio is consistent with the cytoplasmic [ATP][ADP][Pi] being an important determinant of homeostatic regulation of cellular energy metabolism.  相似文献   

6.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   

7.
Kluyveromyces lactis is a yeast widely used in processes related to milk whey use and lactose fermentation. However, contradictory information about some aspects related to the respirofermentative metabolism of this yeast is found in the literature. We have studied ethanol production and oxygen use in discontinuous and continuous cultures of K. lactis under hypoxic and aerobic conditions. Growth in nonfermentable carbon sources reflects a more efficient respiratory capacity of K. lactis in relation to Saccharomyces cerevisiae; however, in both species, similar glucose fermentation levels under aerobic oxygen-limited conditions are found. Continuous K. lactis cultures in fully oxidative conditions show the oxygen and substrate uptake rates typical of a respiration-unlimited Crabtree-negative yeast; however, a small residual fermentation is present even when respiration is not limited. Some aspects of the Crabtree effect in K. lactis are discussed. The impossibility of including K. lactis in any group of the metabolism-based classification from Alexander and Jeffries (1990) has led us to the formulation of a new group which incorporates the peculiarities of this and other related yeasts.  相似文献   

8.
Despite the importance of some Zygosaccharomyces species as agents causing spoilage of food, the carbon and energy metabolism of most of them is yet largely unknown. This is the case with Zygosaccharomyces bailii. In this study the occurrence of the Crabtree effect in the petite-negative yeast Z. bailii ATCC 36947 was investigated. In this yeast the aerobic ethanol production is strictly dependent on the carbon source utilised. In glucose-limited continuous cultures a very low level of ethanol was produced. In fructose-limited continuous cultures ethanol was produced at a higher level and its production increased with the dilution rate. As a consequence, on fructose the onset of respiro-fermentative metabolism caused a reduction in biomass yield. An immediate aerobic alcoholic fermentation in Z. bailii was observed during the transition from sugar limitation to sugar excess, both on glucose and on fructose. The analysis of some key enzymes of the fermentative metabolism showed a high level of acetyl-CoA synthetase in Z. bailii growing on fructose. At high dilution rates, the activities of glucose- and fructose-phosphorylating enzymes, as well as of pyruvate decarboxylase and alcohol dehydrogenase, were higher in cells during growth on fructose than on glucose.  相似文献   

9.
【目的】实现鼠灰链霉菌来源经密码子优化后的腺苷酸脱氨酶基因在乳酸克鲁维酵母(Kluyveromyces lactis GG799)中组成型表达。【方法】以鼠灰链霉菌(Streptomyces murinus)来源的腺苷酸脱氨酶(AMP)基因经密码子优化后作为模板,设计特异性引物,PCR扩增AMP脱氨酶基因opt-AMPD,以p KLAC1为载体构建重组表达质粒p KLAC1-opt-AMPD,经Sac II线性化后电转化法转入K.lactis GG799,筛选得到重组菌株,测定酶活,经His TrapTM HP纯化后得到AMP脱氨酶,并优化重组菌的发酵培养基。【结果】对AMP脱氨酶基因进行了密码子优化后,构建了重组K.lactis GG799/p KLAC1-opt-AMPD,实现组成型表达,密码子优化后AMP脱氨酶酶活提高到586±50 U/m L。SDS-PAGE结果显示,纯化后的AMP脱氨酶为单一条带,蛋白大小约为60 k D。优化的发酵培养基为(g/L):葡萄糖40、蛋白胨20、酵母粉15、Na Cl 8、KCl 10、Mg SO4 2,30°C、200 r/min发酵120 h,酶活达到2 100±60 U/m L。【结论】实现了密码子优化后的腺苷酸脱氨酶基因在乳酸克鲁维酵母GG799内的组成型表达,为实现腺苷酸脱氨酶的重组高效表达和发酵生产进行了有益探索。  相似文献   

10.
Summary By employing pulsed field gel electrophoresis we find that slow growing strains of Kluyveromyces lactis have only 43%–55% of the wild-type level of ribosomal DNA (rDNA) repeats. When subjected to prolonged vegetative growth these strains can increase both the number of rDNA repeats and their growth rate.  相似文献   

11.
In glucose-limited aerobic chemostat cultures of a wild-type Saccharomyces cerevisiae and a derived hxk2 null strain, metabolic fluxes were identical. However, the concentrations of intracellular metabolites, especially fructose 1,6-bisphosphate, and hexose-phosphorylating activities differed. Interestingly, the hxk2 null strain showed a higher maximal growth rate and higher Crabtree threshold dilution rate, revealing a higher oxidative capacity for this strain. After a pulse of glucose, aerobic glucose-limited cultures of wild-type S. cerevisiae displayed an overshoot in the intracellular concentrations of glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate before a new steady state was established, in contrast to the hxk2 null strain which reached a new steady state without overshoot of these metabolites. At low dilution rates the overshoot of intracellular metabolites in the wild-type strain coincided with the immediate production of ethanol after the glucose pulse. In contrast, in the hxk2 null strain the production of ethanol started gradually. However, in spite of the initial differences in ethanol production and dynamic behaviour of the intracellular metabolites, the steady-state fluxes after transition from glucose limitation to glucose excess were not significantly different in the wild-type strain and the hxk2 null strain at any dilution rate.  相似文献   

12.
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed. G. A. Oliveira and E. B. Tahara contributed equally to this work.  相似文献   

13.
Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to industrialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engineering efforts aimed at restoring growth in non-ethanol producing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many opportunities for improvement remain.  相似文献   

14.
The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.  相似文献   

15.
The aim of this work was to investigate the physiology of Kluyveromyces marxianus CBS 6556 in terms of its low tendency to form ethanol under exposure to sugar excess, and the split of carbon flux which takes place at the level of glucose-6-phosphate. Measurements were performed in batch cultivations, and after a glucose or a lactose pulse applied to chemostat-grown respiring cells (with a dilution rate of 0.1 h(-1)). No ethanol formation was observed in batch cultivations or during pulse experiments, unless the oxygen supply was shut down, indicating that this organism is more strictly Crabtree-negative than its close relative K. lactis and other known Crabtree-negative yeasts. During the pulse experiments, activities of phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and phosphoglucomutase in cell-free extracts remained rather constant, at higher levels than those of Saccharomyces cerevisiae grown at similar conditions. When cells were exposed to glucose concentrations as high as 26 gl(-1), the activity of phosphoglucomutase was higher than that in cells exposed to 14 gl(-1) glucose, whereas the activities of phosphoglucoisomerase and glucose-6-phosphate dehydrogenase did not change. Our results suggest that the low tendency for ethanol formation in K. marxianus might be a consequence of this yeast's capacity of keeping the glycolytic flux constant, due at least in part to the diversion of carbon flux towards the biosynthesis of carbohydrates and towards the pentose phosphate pathway.  相似文献   

16.
Among the laccases produced by the white-rot fungus Pleurotus ostreatus, there are two closely related atypical isoenzymes, POXA3a and POXA3b. These isoenzymes are endowed with quaternary structure, consisting of two subunits very different in size. The POXA3 large subunit is clearly homologous to other known laccases, while the small subunit does not show significant homology with any protein in data banks. To investigate on the singular structure of the POXA3 complex, a new system for recombinant expression of heterodimer proteins in the yeast Kluyveromyces lactis has been set up. A unique expression vector has been used and the cDNAs encoding the two subunits have been cloned under the control of the same bi-directionally acting promoter. Expression of the large subunit alone and co-expression of both subunits in the same host have been demonstrated and the properties of the recombinant proteins have been compared. Clones expressing the large subunit alone exhibited always notably lower activity than those expressing both subunits. In addition to the activity increase, the presence of the small subunit led to a significant increase of laccase stability. Therefore, a role of the small subunit in POXA3 stabilisation is suggested.  相似文献   

17.
In Pichia membranifaciens, cyanide-resistant respiration (CRR) sensitive to salicylhydroxamic acid emerged after forced aeration of starved cells for 4 h. Surveying a large number of species by this simple methodology, we found that CRR is very frequent among yeasts. Remarkably, considering our results together with previous data in the literature, CRR was present in 24 out of 28 non-fermentative or Crabtree-negative yeasts and absent in 10 out of 12 Crabtree-positive yeasts. We submit that, as alternatives to cytochromic respiration, yeasts developed two strategies: either aerobic fermentation in Crabtree-positive yeasts or CRR in non-fermentative or Crabtree-negative yeasts.  相似文献   

18.
19.
We cloned the Kluyveromyces lactis KlNTH1 gene, which encodes neutral trehalase. It showed 65.2% and 68.5% identity at nucleotide and amino acid sequence level, respectively, with the Saccharomyces cerevisiae NTH1 gene. Multiple alignment of the predicted trehalase protein sequences from yeasts, bacteria, insects, and mammals revealed two major domains of conservation. Only the yeast trehalases displayed in an N-terminal extension two consensus sites for cAMP-dependent protein phosphorylation and a putative Ca2+-binding sequence. Gene disruption of the KlNTH1 gene abolished neutral trehalase activity and clearly revealed a trehalase activity with an acid pH optimum. It also resulted in a high constitutive trehalose level. Expression of the KlNTH1 gene in an S. cerevisiae nth1Δ mutant resulted in rapid activation of the heterologous trehalase upon addition of glucose to cells growing on a nonfermentable carbon source and upon addition of a nitrogen source to cells starved for nitrogen in a glucose-containing medium. In K. lactis, the same responses were observed except that rapid activation by glucose was observed only in early-exponential-phase cells. Inactivation of K. lactis neutral trehalase by alkaline phosphatase and activation by cAMP in cell extracts are consistent with control of the enzyme by cAMP-dependent protein phosphorylation. Received: 19 March 1996 / Accepted: 15 October 1996  相似文献   

20.
Cytokinesis in yeast and mammalian cells is a highly coordinated process mediated by the constriction of an actomyosin ring. In yeasts, it is accompanied by the formation of a chitinous primary septum. Although much is known about the regulation of cytokinesis in budding yeast, overlapping functions of redundant genes complicates genetic analyses. Here, we investigated the effects of various deletion mutants on cytokinesis in the milk yeast Kluyveromyces lactis. To determine the spatiotemporal parameters of cytokinesis components, live-cell imaging of fluorophor-tagged KlMyo1 and a new Lifeact probe for KlAct1 was employed. In contrast to Saccharomyces cerevisiae, where deletion of ScMYO1 is lethal, Klmyo1 deletion was temperature-sensitive. Transmission and scanning electron microscopy demonstrated that the Klmyo1 deletion cells had a defect in the formation of the primary septum and in cell separation; this result was confirmed by FACS analyses. Deletion of KlCYK3 was lethal, whereas in S. cerevisiae a cyk3 deletion is synthetically lethal with hof1 deletion. Growth of Klhof1 mutants was osmoremedial at 25 °C, as it is in S. cerevisiae. CYK3 and HOF1 genes cross-complemented in both species, suggesting that they are functional homologs. Inn1, a common interactor for these two regulators, was essential in both yeasts and the encoding genes did not cross-complement. The C2 domain of the Inn1 homologs conferred species specificity. Thus, our work establishes K. lactis as a model yeast to study cytokinesis with less genetic redundancy than S. cerevisiae. The viability of Klmyo1 deletions provides an advantage over budding yeast to study actomyosin-independent cytokinesis. Moreover, the lethality of Klcyk3 null mutants suggests that there are fewer functional redundancies with KlHof1 in K. lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号