首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Macrophage-activating lipopeptide 2 (MALP-2), a mycoplasmal diacylated lipopeptide with palmitic acid moiety (Pam2), activates Toll-like receptor (TLR) 2 to induce inflammatory cytokines. TLR2 is known to mature myeloid dendritic cells (mDC) to drive mDC contact-mediated natural killer (NK) cell activation. Here we tested if MALP-2 activates NK cells through stimulation of TLR2 on mDC. Although synthetic MALP-2 with 6 or 14 amino acids (a.a.) stretch (designated as s and f) matured mDC to induce IL-6, IL-12p40 and TNF-α to a similar extent, they far less activated NK cells than Pam2CSK4, a positive control of 6 a.a.-containing diacyl lipopeptide. MALP-2s and f were TLR2/6 agonists and activate the MyD88 pathway similar to Pam2CSK4, but MALP-2s having the CGNNDE sequence acted on mDC TLR2 to barely induce external NK activation. Even the s form, with slightly high induction of IL-6 compared to the f form, barely induced in vivo growth retardation of NK-sensitive implant tumor. Pam2CSK4 and MALP-2 have the common lipid moiety but different peptides, which are crucial for NK cell activation. The results infer that MALP-2 is applicable to a cytokine inducer but not to an adjuvant for antitumor NK immunotherapy.  相似文献   

2.
3.
TLRs are primary sensors of both innate and adaptive immune systems, where they play a pivotal role in the response directed against structurally conserved components of pathogens. Synthetic bacterial lipopeptide Pam3CSK4 is a TLR2 agonist capable of modulating Th1 and Th2 responses. This study examines the therapeutic effect of Pam3CSK4 in established airway inflammation in a murine model of asthma. In mice previously sensitized and challenged with OVA, Pam3CSK4 given i.p. markedly reduced the total inflammatory cell infiltrate and eosinophilia in bronchoalveolar lavage fluid. Pam3CSK4 therapy was associated with a reduction in OVA-induced IL-4 and IL-5 secretion from thoracic lymph node culture, airways inflammation, bronchial hyperresponsiveness, and serum levels of IgE. Pam3CSK4 therapy was also associated with an increase in OVA-induced IFN-gamma, IL-12, and IL-10 production. However, the anti-inflammatory effect of Pam3CSK4 was independent of IL-10 or TGF-beta, but was critically dependent on IL-12, the production of which by dendritic cells was enhanced by Pam3CSK4 in vitro. Our results provide direct evidence that Pam3CSK4 could represent a novel therapeutic agent in allergic airways disease.  相似文献   

4.
Toll-like receptor 2 (TLR2) recognizes bacterial derived- and synthetic-lipopeptides after dimerization with TLR1 or TLR6. Hyper-activation of TLR2 has been described in several inflammatory diseases and the discovery of inhibitors of its pro-inflammatory activity represent potential starting points to develop therapeutics in such pathologies. We designed peptides derived from the TLR2 sequence comprising amino acid residues involved in ligand binding (Pam3CSK4) or heterodimerization (TLR2/TLR1) as pointed out by structural data.2 We identified several peptides (P13, P13(LL), P16, P16(LL)) which inhibited TLR2/1 signaling in HEK293-TLR2 cells (MAPK activation and NF-kB activity). Moreover, P13L and P16L decreased TNFα release in human primary PBMCs and mouse macrophages. The peptides were selective for TLR2/1 as they did not inhibit the activity of other TLRs tested. P13L and P16L inhibited the internalization of Pam3CSK4 fluorescently labeled in macrophages and the heterodimerization of TLR2 with TLR1 as demonstrated by immunoprecipitation studies. Our data demonstrate that peptides derived from the region comprising the leucine-rich repeats (LRR) 11 and 13 in the extracellular domain of TLR2 are good starting points to develop more potent anti-inflammatory peptides with TLR2 inhibitory activity.  相似文献   

5.
A20 functions to terminate Toll-like receptor (TLR)-induced immune response, and play important roles in the induction of lipopolysacchride (LPS)-tolerance. However, the molecular mechanism for Pam3CSK4-tolerance is uncertain. Here we report that TLR1/2 ligand Pam3CSK4 induced tolerance in monocytic THP-1 cells. The pre-treatment of THP-1 cells with Pam3CSK4 down-regulated the induction of pro-inflammatory cytokines induced by Pam3CSK4 re-stimulation. Pam3CSK4 pre-treatment also down-regulated the signaling transduction of JNK, p38 and NF-κB induced by Pam3CSK4 re-stimulation. The activation of TLR1/2 induced a rapid and robust up-regulation of A20, suggesting that A20 may contribute to the induction of Pam3CSK4-tolerance. This hypothesis was proved by the observation that the over-expression of A20 by gene transfer down-regulated Pam3CSK4-induced inflammatory responses, and the down-regulation of A20 by RNA interference inhibited the induction of tolerance. Moreover, LPS induced a significant up-regulation of A20, which contributed to the induction of cross-tolerance between LPS and Pam3CSK4. A20 was also induced by the treatment of THP-1 cells with TNF-α and IL-1β. The pre-treatment with TNF-α and IL-1β partly down-regulated Pam3CSK4-induced activation of MAPKs. Furthermore, pharmacologic inhibition of GSK3 signaling down-regulated Pam3CSK4-induced A20 expression, up-regulated Pam3CSK4-induced inflammatory responses, and partly reversed Pam3CSK4 pre-treatment-induced tolerance, suggesting that GSK3 is involved in TLR1/2-induced tolerance by up-regulation of A20 expression. Taken together, these results indicated that A20 is a critical regulator for TLR1/2-induced pro-inflammatory responses.  相似文献   

6.

Background

Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo.

Methods

Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml).

Results

Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05).

Conclusion

TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.  相似文献   

7.
《Cellular signalling》2014,26(2):279-286
The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARs, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLCγ2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI.Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking β3, in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin β3 signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLCγ2.  相似文献   

8.
This study examined the effect of TLR2 activation by its specific ligand, Pam3CSK4, on cerebral ischemia/reperfusion (I/R) injury. Mice (n = 8/group) were treated with Pam3CSK4 1 h before cerebral ischemia (60 min), followed by reperfusion (24 h). Pam3CSK4 was also given to the mice (n = 8) 30 min after ischemia. Infarct size was determined by triphenyltetrazolium chloride staining. The morphology of neurons in brain sections was examined by Nissl staining. Pam3CSK4 administration significantly reduced infarct size by 55.9% (p < 0.01) compared with untreated I/R mice. Therapeutic treatment with Pam3CSK4 also significantly reduced infarct size by 55.8%. Morphologic examination showed that there was less neuronal damage in the hippocampus of Pam3CSK4-treated mice compared with untreated cerebral I/R mice. Pam3CSK4 treatment increased the levels of Hsp27, Hsp70, and Bcl2, and decreased Bax levels and NF-κB-binding activity in the brain tissues. Administration of Pam3CSK4 significantly increased the levels of phospho-Akt/Akt and phospho-GSK-3β/GSK-3β compared with untreated I/R mice. More significantly, either TLR2 deficiency or PI3K inhibition with LY29004 abolished the protection by Pam3CSK4. These data demonstrate that activation of TLR2 by its ligand prevents focal cerebral ischemic damage through a TLR2/PI3K/Akt-dependent mechanism. Of greater significance, these data indicate that therapy with a TLR2-specific agonist during cerebral ischemia is effective in reducing injury.  相似文献   

9.
We have reported that apoptotic β cells undergoing secondary necrosis, called "late apoptotic (LA) β cells," stimulated APCs and induced diabetogenic T cell priming through TLR2, which might be one of the initial events in autoimmune diabetes. Indeed, diabetogenic T cell priming and the development of autoimmune diabetes were significantly inhibited in TLR2-null NOD mice, suggesting the possibility that TLR2 blockade could be used to inhibit autoimmune diabetes. Because prolonged TLR stimulation can induce TLR tolerance, we investigated whether repeated TLR2 administration affects responses to LA β cells and inhibits autoimmune diabetes in NOD mice by inducing TLR2 tolerance. Treatment of primary peritoneal macrophages with a TLR2 agonist, Pam3CSK(4), suppressed cytokine release in response to LA insulinoma cells or further TLR2 stimulation. The expression of signal transducer IRAK-1 and -4 proteins was decreased by repeated TLR2 stimulation, whereas expression of IRAK-M, an inhibitory signal transducer, was enhanced. Chronic Pam3CSK(4) administration inhibited the development of diabetes in NOD mice. Diabetogenic T cell priming by dendritic cells and upregulation of costimulatory molecules on dendritic cells by in vitro stimulation were attenuated by Pam3CSK(4) administration in vivo. Pam3CSK(4) inhibited diabetes after adoptive transfer of diabetogenic T cells or recurrence of diabetes after islet transplantation by pre-existing sensitized T cells. These results showed that TLR2 tolerance can be achieved by prolonged treatment with TLR2 agonists, which could inhibit priming of naive T cells, as well as the activity of sensitized T cells. TLR2 modulation could be used as a novel therapeutic modality against autoimmune diabetes.  相似文献   

10.
Among the 10 human Toll-like receptors (TLRs), TLR2 appears to be unique in its requirement for cooperation with other TLRs, namely TLR1 and TLR6, to mediate cell signaling. Through reconstitution experiments, we have defined more precisely the function of these human TLRs. Human colonic epithelial cells cotransfected with TLR1 and -2 preferentially respond to a synthetic tripalmitoylated bacterial lipopeptide analogue (Pam(3)CSK(4)). However, examination of a wide variety of lipopeptide derivatives indicates that recognition by human TLR1 and -2 does not strictly correlate with the number or position of the acyl chains on the modified cysteine residue. Conversely, human TLR2 and -6 exclusively respond to lipopeptides possessing a diacylglycerol group. Most surprisingly, we have found that an R stereoisomer of diacylated macrophage-activating lipopeptide 2 (MALP-2) exclusively activates epithelial cells through TLR6 and -2 but not through TLR1 and -2. These results suggest that the chirality of the central carbon of the diacylglycerol group of these agonists is a structural determinant for human TLR recognition. Examination of chimeric receptors, generated by domain exchange between TLR1 and -6, has revealed that leucine-rich repeats 9-12 of the extracellular domain enable these receptors to discriminate between structurally similar lipopeptides. However, additional chimeric constructs reveal that this region alone is not sufficient to generate receptors that can functionally cooperate with TLR2. Our results support the idea that TLR1 and TLR6 diverged during evolution to differentially recognize natural lipoprotein structures and that this function has been conserved with respect to the human receptors.  相似文献   

11.
It has demonstrated that the recognition of triacylated lipopeptides by Toll-like receptor (TLR) 2 requires TLR1 as a coreceptor. In the NF-kappaB reporter assay system in which human embryonic kidney 293 cells were transfected with TLR2 and TLR1 together with an NF-kappaB luciferase reporter gene, S-(2,3-bispalmitoyloxypropyl)-N-palmitoyl-Cys-Lys-Lys-Lys-Lys (Pam(3)CSK(4)) and Pam(3)CSSNA were recognized by TLR2/TLR1, but the recognition level was unexpectedly very low. However, cotransfection of CD14 drastically enhanced the recognition of triacylated lipopeptides by TLR2/TLR1. The CD14-induced enhancement did not occur without cotransfection of TLR1. Both CD14(dS39-A48), a mutant with deletion of the part of possible N-terminal ligand-binding pocket, and anti-CD14 monoclonal antibody reduced the CD14-induced enhancement. Transfection of a TIR domain-deficient mutant of TLR2 (TLR2(dE772-S784)) or TLR1 (TLR1(dQ636-K779)) completely abrogated the CD14-induced enhancement. Soluble recombinant CD14 added extracellularly enhanced the recognition of Pam(3)CSSNA by TLR2/TLR1. Immunoprecipitation analysis demonstrated that CD14 was not associated with TLR2 but that TLR1 was associated with TLR2. In addition, surface plasmon resonance-based assay demonstrated that CD14 binds to Pam(3)CSK(4) at a dissociation constant of 5.7 microM. This study suggests that CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the TLR2/TLR1 complex without binding to the receptor complex.  相似文献   

12.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

13.
Innate immune responses that operate through Toll-like receptors (TLRs) are actively involved in the development of diseases predominantly mediated by adaptive immune responses. This is true also for allergic disease, as TLRs have been found to be involved in the development of allergic airway inflammation. We investigated whether stimulating TLR2 also abrogates murine allergic conjunctivitis by upregulating Th1 responses. We found that treating mice during the efferent phase with the TLR2 agonist Pam3CSK4 significantly suppressed eosinophil infiltration into the conjunctiva. However, Pam3CSK4 treatment inhibited both the Th1 and Th2 responses in the mice, and also suppressed eosinophil infiltration in IFN-gamma knockout mice. Flow cytometric analysis demonstrated that Pam3CSK4 treatment significantly elevated the numbers of annexin V-positive splenocytes, especially CD4 positive T cells. Thus, the stimulation of TLR2 during the efferent phase of murine allergic conjunctivitis suppresses eosinophil infiltration by inducing CD4 positive T-cell apoptosis rather than upregulating Th1 responses.  相似文献   

14.
TLR2 is a pattern recognition receptor that functions in association with TLR1 or TLR6 to mediate innate immune responses to a variety of conserved microbial products. In the present study, the ectodomain of TLR2 was extensively mutated, and the mutants were assessed for their ability to bind and to mediate cellular responses to triacylated lipopeptide Pam3CSK4. This analysis provides evidence that the recently published crystal structure of the TLR2-TLR1-Pam3CSK4 complex represents a functional signal-inducing complex. Furthermore, we report that extended H-bond networks on the surface of TLR2 are critical for signaling in response to Pam3CSK4 and to other di- and tri-acylated TLR2-TLR6 and TLR2-TLR1 ligands. Based on this finding, we suggest a dynamic model for TLR2-mediated recognition of these ligands in which TLR2 fluctuates between a conformation that is more suitable for binding of the fatty acyl moieties of the ligands and a conformation that favors, via a specific orientation of the ligand head group, formation of a signal-inducing ternary complex.  相似文献   

15.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

16.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

17.
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.  相似文献   

18.

Background

The recognition of microbial molecular patterns via Toll-like receptors (TLRs) is critical for mucosal defenses.

Methods

Using well-differentiated primary cultures of human airway epithelia, we investigated the effects of exposure of the cells to cytokines (TNF-α and IFN-γ) and dexamethasone (dex) on responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway surface liquid antimicrobial activity were used as endpoints.

Results

Microarray expression profiling in human airway epithelia revealed that first response cytokines markedly induced TLR2 expression. Real-time PCR confirmed that cytokines (TNF-α and IFN-γ), dexamethasone (dex), or cytokines + dex increased TLR2 mRNA abundance. A synergistic increase was seen with cytokines + dex. To assess TLR2 function, epithelia pre-treated with cytokines ± dex were exposed to the TLR2/TLR1 ligand Pam3CSK4 for 24 hours. While cells pre-treated with cytokines alone exhibited significantly enhanced IL-8 and CCL20 secretion following Pam3CSK4, mean IL-8 and CCL20 release decreased in Pam3CSK4 stimulated cells following cytokines + dex pre-treatment. This marked increase in inflammatory gene expression seen after treatment with cytokines followed by the TLR2 ligand did not correlate well with NF-κB, Stat1, or p38 MAP kinase pathway activation. Cytokines also enhanced TLR2 agonist-induced beta-defensin 2 mRNA expression and increased the antimicrobial activity of airway surface liquid. Dex blocked these effects.

Conclusion

While dex treatment enhanced TLR2 expression, co-administration of dex with cytokines inhibited airway epithelial cell responsiveness to TLR2/TLR1 ligand over cytokines alone. Enhanced functional TLR2 expression following exposure to TNF-α and IFN-γ may serve as a dynamic means to amplify epithelial innate immune responses during infectious or inflammatory pulmonary diseases.  相似文献   

19.
Su J  Xie Q  Wilson I  Li L 《Cellular signalling》2007,19(7):1596-1601
Toll-like-receptor mediated signaling is finely regulated by a complex intracellular protein network including the interleukin-1 receptor associate kinases (IRAKs). IRAK-4, 1, and 2 may positively regulate innate immunity signaling through the activation of various downstream kinases such as MAPKs. In contrast, IRAK-M plays an inhibitory role through unknown mechanism. In this report, we show that IRAK-M is ubiquitously present in the cell, and becomes exclusively cytoplasmic upon bacterial lipoprotein Pam(3)CSK(4) challenge. Furthermore, using bone marrow derived macrophages (BMDM) from wild type, IRAK1(-/-), and IRAK-M(-/-) mice, we have herein demonstrated that IRAK-M selectively attenuates bacterial lipopeptide Pam(3)CSK(4)-induced p38 activation, but not ERK or JNK. IRAK1(-/-) and IRAK-M(-/-)BMDM display distinct activation profile of various MAP kinases upon Pam(3)CSK(4) challenge, indicating that IRAK-M exerts its inhibitory effect through an IRAK1 independent pathway. Pam(3)CSK(4) challenge leads to rapid decrease of MKP-1 protein level in IRAK-M(-/-)BMDM as well as THP-1 cells with decreased IRAK-M expression through siRNA interference. Our findings indicate that IRAK-M selectively attenuates p38 activation and inhibits innate immunity through stabilizing MKP-1.  相似文献   

20.
Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号